Analysis of One-Dimensional Inelastic Deformation of the Clad Layer by Rolling for Restoration of Flat Surface Parts

Q2 Engineering Journal of Machine Engineering Pub Date : 2024-03-12 DOI:10.36897/jme/185475
Huy Pham, Gulmira Zhaibergenovna Bulekbayeva, A. Tabylov, Amina Zakharovna Bukayeva, Nabat Suieuova, A. Yusupov, G. Bilashova, G. Mambetaliyeva
{"title":"Analysis of One-Dimensional Inelastic Deformation of the Clad Layer by Rolling for Restoration of Flat Surface Parts","authors":"Huy Pham, Gulmira Zhaibergenovna Bulekbayeva, A. Tabylov, Amina Zakharovna Bukayeva, Nabat Suieuova, A. Yusupov, G. Bilashova, G. Mambetaliyeva","doi":"10.36897/jme/185475","DOIUrl":null,"url":null,"abstract":"The hardening-finishing treatment of parts surface with rolling by steel cylindrical rollers produces low roughness, reduced residual compression stresses, and fine-grained structure due to plastic deformations. The deformation of metals during machining at high temperatures is characterized by a significant influence of strain rates on stresses. This necessitates the calculation of stresses and strains based on the equation of state of rheonic bodies. This study aims to determine the components of stresses and force factors of the technological process of finishing and strengthening machining of the surface of parts by deriving the analytical solutions to calculate the stress-strain state within the deformation zone based on creep theory. In this problem, general formulas are obtained for calculating the stress-strain state, pressure and friction forces on the contact surface, as well as forces and moments acting on the roller. Numerical analysis using Mathcad explores the understanding of the stress-strain state in the deformation zone on the force factors of the technological process. The obtained results are beneficial for establishing the mode of thermomechanical processing and selecting appropriate technological equipment for restoring flat surface parts.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"90 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/185475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The hardening-finishing treatment of parts surface with rolling by steel cylindrical rollers produces low roughness, reduced residual compression stresses, and fine-grained structure due to plastic deformations. The deformation of metals during machining at high temperatures is characterized by a significant influence of strain rates on stresses. This necessitates the calculation of stresses and strains based on the equation of state of rheonic bodies. This study aims to determine the components of stresses and force factors of the technological process of finishing and strengthening machining of the surface of parts by deriving the analytical solutions to calculate the stress-strain state within the deformation zone based on creep theory. In this problem, general formulas are obtained for calculating the stress-strain state, pressure and friction forces on the contact surface, as well as forces and moments acting on the roller. Numerical analysis using Mathcad explores the understanding of the stress-strain state in the deformation zone on the force factors of the technological process. The obtained results are beneficial for establishing the mode of thermomechanical processing and selecting appropriate technological equipment for restoring flat surface parts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于修复平面部件的轧制包层一维非弹性变形分析
通过钢制圆柱轧辊对零件表面进行轧制硬化-精加工处理,可产生较低的粗糙度、较小的残余压缩应力以及因塑性变形而形成的细粒结构。金属在高温加工过程中的变形特点是应变率对应力有显著影响。这就需要根据流变体的状态方程计算应力和应变。本研究旨在根据蠕变理论推导出计算变形区内应力-应变状态的解析解,从而确定零件表面精加工和强化加工技术过程中的应力和力因素。在这一问题中,获得了计算应力应变状态、接触面上的压力和摩擦力以及作用在滚筒上的力和力矩的一般公式。使用 Mathcad 进行的数值分析探讨了变形区的应力应变状态对工艺流程力因素的影响。获得的结果有助于确定热机械加工的模式,并为恢复平面零件选择合适的技术设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1