Colorectal cancer prediction via histopathology segmentation using DC-GAN and VAE-GAN

R. Sujatha, Mahalakshmi K, M. Yoosuf
{"title":"Colorectal cancer prediction via histopathology segmentation using DC-GAN and VAE-GAN","authors":"R. Sujatha, Mahalakshmi K, M. Yoosuf","doi":"10.4108/eetpht.10.5395","DOIUrl":null,"url":null,"abstract":"Colorectal cancer ranks as the third most common form of cancer in the United States. The Centres of Disease Control and Prevention report that males and individuals assigned male at birth (AMAB) have a slightly higher incidence of colon cancer than females and those assigned female at birth (AFAB) Black humans are more likely than other ethnic groups or races to develop colon cancer. Early detection of suspicious tissues can improve a person's life for 3-4 years. In this project, we use the EBHI-seg dataset. This study explores a technique called Generative Adversarial Networks (GAN) that can be utilized for data augmentation colorectal cancer histopathology Image Segmentation. Specifically, we compare the effectiveness of two GAN models, namely the deep convolutional GAN (DC-GAN) and the Variational autoencoder GAN (VAE-GAN), in generating realistic synthetic images for training a neural network model for cancer prediction. Our findings suggest that DC-GAN outperforms VAE-GAN in generating high-quality synthetic images and improving the neural network model. These results highlight the possibility of GAN-based data augmentation to enhance machine learning models’ performance in medical image analysis tasks. The result shows DC-GAN outperformed VAE-GAN.","PeriodicalId":36936,"journal":{"name":"EAI Endorsed Transactions on Pervasive Health and Technology","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Pervasive Health and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetpht.10.5395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer ranks as the third most common form of cancer in the United States. The Centres of Disease Control and Prevention report that males and individuals assigned male at birth (AMAB) have a slightly higher incidence of colon cancer than females and those assigned female at birth (AFAB) Black humans are more likely than other ethnic groups or races to develop colon cancer. Early detection of suspicious tissues can improve a person's life for 3-4 years. In this project, we use the EBHI-seg dataset. This study explores a technique called Generative Adversarial Networks (GAN) that can be utilized for data augmentation colorectal cancer histopathology Image Segmentation. Specifically, we compare the effectiveness of two GAN models, namely the deep convolutional GAN (DC-GAN) and the Variational autoencoder GAN (VAE-GAN), in generating realistic synthetic images for training a neural network model for cancer prediction. Our findings suggest that DC-GAN outperforms VAE-GAN in generating high-quality synthetic images and improving the neural network model. These results highlight the possibility of GAN-based data augmentation to enhance machine learning models’ performance in medical image analysis tasks. The result shows DC-GAN outperformed VAE-GAN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DC-GAN 和 VAE-GAN 通过组织病理学分割预测结直肠癌
结肠直肠癌是美国第三大常见癌症。美国疾病控制和预防中心(Centres of Disease Control and Prevention)报告称,男性和出生时被指定为男性(AMAB)的人患结肠癌的几率略高于女性和出生时被指定为女性(AFAB)的人。早期发现可疑组织可以延长患者 3-4 年的生命。在本项目中,我们使用了 EBHI-seg 数据集。本研究探索了一种称为生成对抗网络(GAN)的技术,该技术可用于数据增强型结直肠癌组织病理学图像分割。具体来说,我们比较了两种 GAN 模型(即深度卷积 GAN(DC-GAN)和变异自动编码器 GAN(VAE-GAN))在生成用于训练癌症预测神经网络模型的真实合成图像方面的有效性。我们的研究结果表明,在生成高质量合成图像和改进神经网络模型方面,DC-GAN 优于 VAE-GAN。这些结果凸显了基于 GAN 的数据增强技术在医学图像分析任务中提高机器学习模型性能的可能性。结果显示 DC-GAN 优于 VAE-GAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EAI Endorsed Transactions on Pervasive Health and Technology
EAI Endorsed Transactions on Pervasive Health and Technology Computer Science-Computer Science (miscellaneous)
CiteScore
3.50
自引率
0.00%
发文量
14
审稿时长
10 weeks
期刊最新文献
Thermal image processing system to monitor muscle warm-up in students prior to their sports activities Individual Intervention and Assessment of Students' Physical Fitness Based on the "Three Precision" Applet and Mixed Strategy Optimised CNN Networks Research on Portable Intelligent Terminal and APP Application Analysis and Intelligent Monitoring Method of College Students' Health Status Research on 2D Animation Simulation Based on Artificial Intelligence and Biomechanical Modeling Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced Pneumonia Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1