Hydration/Dehydration Induced Reversible Transformation between a Porous Hydrogen-Bonded Organic Framework and a Nonporous Molecular Crystal for Highly Efficient Gas Dehydration

Yao Wang, Xiyu Song, Guanglai Mo, Xiangyu Gao, Enyu Wu, Bin Li, Yunbo Bi* and Peng Li*, 
{"title":"Hydration/Dehydration Induced Reversible Transformation between a Porous Hydrogen-Bonded Organic Framework and a Nonporous Molecular Crystal for Highly Efficient Gas Dehydration","authors":"Yao Wang,&nbsp;Xiyu Song,&nbsp;Guanglai Mo,&nbsp;Xiangyu Gao,&nbsp;Enyu Wu,&nbsp;Bin Li,&nbsp;Yunbo Bi* and Peng Li*,&nbsp;","doi":"10.1021/cbe.3c00114","DOIUrl":null,"url":null,"abstract":"<p >Gas dehydration is a critical process in gas transportation and chemical reactions, yet traditional drying agents require an energy-intensive dehydration and regeneration step. Here, we present a nonporous molecular crystal called Melem that can be synthesized and scaled up through solid-state synthesis methods. Melem exhibits exceptional water selectivity in gas dehydration and can be reactivated under moderate conditions. According to the single-crystal structure and powder X-ray diffraction studies, a reversible structural transformation between Melem and its hydrated form, Melem–H<sub>2</sub>O, induced by hydration/dehydration processes has been observed. Melem displays water adsorption properties with a maximum uptake of 11 mmol·g<sup>–1</sup> at <i>p</i>/<i>p</i><sub>0</sub> = 0.92 and 298 K. Additionally, Melem retained consistent water capture capacities after 5 adsorption–desorption cycles. The remarkable gas dehydration performance of Melem was confirmed by column breakthrough experiments, which achieved a separation factor of up to 654.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 4","pages":"283–288"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00114","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.3c00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gas dehydration is a critical process in gas transportation and chemical reactions, yet traditional drying agents require an energy-intensive dehydration and regeneration step. Here, we present a nonporous molecular crystal called Melem that can be synthesized and scaled up through solid-state synthesis methods. Melem exhibits exceptional water selectivity in gas dehydration and can be reactivated under moderate conditions. According to the single-crystal structure and powder X-ray diffraction studies, a reversible structural transformation between Melem and its hydrated form, Melem–H2O, induced by hydration/dehydration processes has been observed. Melem displays water adsorption properties with a maximum uptake of 11 mmol·g–1 at p/p0 = 0.92 and 298 K. Additionally, Melem retained consistent water capture capacities after 5 adsorption–desorption cycles. The remarkable gas dehydration performance of Melem was confirmed by column breakthrough experiments, which achieved a separation factor of up to 654.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水合/脱水诱导多孔氢键有机框架与无孔分子晶体之间的可逆转化,实现高效气体脱水
气体脱水是气体运输和化学反应中的一个关键过程,然而传统的干燥剂需要一个高能耗的脱水和再生步骤。在这里,我们介绍一种名为 Melem 的无孔分子晶体,它可以通过固态合成方法合成并放大。Melem 在气体脱水过程中具有优异的水选择性,并可在中等条件下重新激活。根据单晶结构和粉末 X 射线衍射研究,观察到 Melem 与其水合形式 Melem-H2O 之间在水合/脱水过程中发生了可逆的结构转变。Melem 具有吸水特性,在 p/p0 = 0.92 和 298 K 条件下的最大吸水量为 11 mmol-g-1。柱突破实验证实了 Melem 出色的气体脱水性能,其分离因子高达 654。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead Advanced Separation Materials and Processes Advanced Separation Materials and Processes. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1