A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels

IF 1.5 Q3 ENGINEERING, MECHANICAL Advances in Tribology Pub Date : 2024-03-12 DOI:10.1155/2024/5530337
Hailegebrel Zewdie, G. Shunki, Dinku Syoum, Varatharaju Perumal, Pedro Dionisio Remedios Castañeiras
{"title":"A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels","authors":"Hailegebrel Zewdie, G. Shunki, Dinku Syoum, Varatharaju Perumal, Pedro Dionisio Remedios Castañeiras","doi":"10.1155/2024/5530337","DOIUrl":null,"url":null,"abstract":"Automobile engines require lubrication to lessen the impact of friction due to the high levels of wear and frictional heat generated by the sliding parts. Wear and friction will cause engine parts to endure for less time, be less reliable, and require more maintenance. Diesel fuel can potentially be replaced with biodiesel among other fuels. Diesel engines have a serious problem with equipment that is lubricated by the fuel itself. This study’s goal is to assess the influence of bio-additives on the diesel fuel tribological behavior and energy balance during the car’s idle running, acceleration, constant speed, and braking. Lubricity issues with reformulated diesel and lubricity test procedures are explained. The relationship between tribology and bio-additives is also briefly illustrated. According to the literature, adding bio-additives to fuel boosts its lubricity. Biodiesel has long been considered an additive with excellent lubricant properties. Even in small amounts, adding biodiesel to diesel fuel can increase its lubricity without the need for conventional lubricity additives. This is especially true for diesel fuel with ultralow sulfur. Diesel fuel characteristics determine the precise blending percentage needed to provide the proper lubricity of maximum 520 μm testing wear scars with a high-frequency reciprocating rig (HFRR), although 2% biodiesel nearly invariably imparts adequate lubricity to biodiesel blends. Tall oil fatty acid (TOFA) was one of the bio-additives investigated by HFRR. When the additive concentration was raised from 0 to 500 g/g, the wear scar diameter (WSD) of nonadditive diesel fuel was lowered by 60.3%, from 630 to 250 μm, and the coefficient of friction (COF) was lowered by 95.7%, from 0.47 to 0.02.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5530337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Automobile engines require lubrication to lessen the impact of friction due to the high levels of wear and frictional heat generated by the sliding parts. Wear and friction will cause engine parts to endure for less time, be less reliable, and require more maintenance. Diesel fuel can potentially be replaced with biodiesel among other fuels. Diesel engines have a serious problem with equipment that is lubricated by the fuel itself. This study’s goal is to assess the influence of bio-additives on the diesel fuel tribological behavior and energy balance during the car’s idle running, acceleration, constant speed, and braking. Lubricity issues with reformulated diesel and lubricity test procedures are explained. The relationship between tribology and bio-additives is also briefly illustrated. According to the literature, adding bio-additives to fuel boosts its lubricity. Biodiesel has long been considered an additive with excellent lubricant properties. Even in small amounts, adding biodiesel to diesel fuel can increase its lubricity without the need for conventional lubricity additives. This is especially true for diesel fuel with ultralow sulfur. Diesel fuel characteristics determine the precise blending percentage needed to provide the proper lubricity of maximum 520 μm testing wear scars with a high-frequency reciprocating rig (HFRR), although 2% biodiesel nearly invariably imparts adequate lubricity to biodiesel blends. Tall oil fatty acid (TOFA) was one of the bio-additives investigated by HFRR. When the additive concentration was raised from 0 to 500 g/g, the wear scar diameter (WSD) of nonadditive diesel fuel was lowered by 60.3%, from 630 to 250 μm, and the coefficient of friction (COF) was lowered by 95.7%, from 0.47 to 0.02.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物添加剂对柴油摩擦学行为的影响综述
由于滑动部件会产生大量磨损和摩擦热,汽车发动机需要润滑来减少摩擦的影响。磨损和摩擦会导致发动机部件的使用寿命缩短,可靠性降低,需要更多的维护。柴油有可能被生物柴油和其他燃料取代。柴油发动机在使用燃料本身润滑的设备方面存在严重问题。本研究的目标是评估生物添加剂在汽车怠速运行、加速、匀速行驶和制动过程中对柴油摩擦学行为和能量平衡的影响。此外,还解释了重配柴油的润滑性问题和润滑性测试程序。此外,还简要说明了摩擦学与生物添加剂之间的关系。根据文献记载,在燃料中添加生物添加剂可提高其润滑性。生物柴油一直被认为是一种具有出色润滑性能的添加剂。即使在柴油中添加少量生物柴油,也能提高其润滑性,而无需使用传统的润滑性添加剂。对于超低硫柴油来说尤其如此。柴油的特性决定了在使用高频往复式钻机 (HFRR) 测试最大 520 μm 磨损痕时提供适当润滑性所需的精确混合比例,不过 2% 的生物柴油几乎总是能为生物柴油混合燃料带来足够的润滑性。妥尔油脂肪酸 (TOFA) 是 HFRR 研究的生物添加剂之一。当添加剂浓度从 0 克/克提高到 500 克/克时,非添加剂柴油的磨损痕直径 (WSD) 降低了 60.3%,从 630 微米降至 250 微米,摩擦系数 (COF) 降低了 95.7%,从 0.47 降至 0.02。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Experimental Comparison of the Effect of Using Synthetic, Semi-Synthetic, and Mineral Engine Oil on Gasoline Engine Parts Wear A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels Mathematical Modeling of the Bearing Ratio Curve Rmr (50% Rz), through Investigation of the Effect of Process Parameters in Hard Turning of Steel C55 (DIN) with Mixed Ceramics MC2 (Al2O3 + TiC) Tribological and Mechanical Properties of Gradient Coating on Al2O3-Based Coating Produced by Detonation Spraying Methods Investigation on the Cutting Force and Surface Quality in Harmonically Vibrated Broaching (HVB)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1