The dispersion and influence of graphene oxide modified polycarboxylate superplasticizer in alkaline cement solution

IF 1.4 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Cement Research Pub Date : 2024-03-11 DOI:10.1680/jadcr.23.00217
Han Zhou, Dongxu Li
{"title":"The dispersion and influence of graphene oxide modified polycarboxylate superplasticizer in alkaline cement solution","authors":"Han Zhou, Dongxu Li","doi":"10.1680/jadcr.23.00217","DOIUrl":null,"url":null,"abstract":"The aggregation of graphene oxide (GO) in alkaline solutions is a critical factor that limits its potential application in cement-based materials. In this study, a novel superplasticizer was employed as a dispersant, and the GO@PCE water-reducing agent was synthesized through a dropwise addition method. This synthesis approach not only preserves the water-reducing capabilities of PCE but also enhances the dispersibility of GO in alkaline cement solutions. Furthermore, the synthesis method is straightforward. The results demonstrate that GO@PCE maintains excellent dispersion in saturated calcium hydroxide solution. Furthermore, it was observed that GO@PCE can enhance the workability of cement, accelerate cement hydration, reduce the crystallite size of calcium hydroxide, and effectively increase the compressive strength of cement mortar.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aggregation of graphene oxide (GO) in alkaline solutions is a critical factor that limits its potential application in cement-based materials. In this study, a novel superplasticizer was employed as a dispersant, and the GO@PCE water-reducing agent was synthesized through a dropwise addition method. This synthesis approach not only preserves the water-reducing capabilities of PCE but also enhances the dispersibility of GO in alkaline cement solutions. Furthermore, the synthesis method is straightforward. The results demonstrate that GO@PCE maintains excellent dispersion in saturated calcium hydroxide solution. Furthermore, it was observed that GO@PCE can enhance the workability of cement, accelerate cement hydration, reduce the crystallite size of calcium hydroxide, and effectively increase the compressive strength of cement mortar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化石墨烯改性聚羧酸盐超塑化剂在碱性水泥溶液中的分散及其影响
氧化石墨烯(GO)在碱性溶液中的聚集是限制其在水泥基材料中潜在应用的一个关键因素。本研究采用了一种新型超塑化剂作为分散剂,并通过滴加法合成了 GO@PCE 减水剂。这种合成方法不仅保留了 PCE 的减水功能,还提高了 GO 在碱性水泥溶液中的分散性。此外,该合成方法简单易行。结果表明,GO@PCE 在饱和氢氧化钙溶液中能保持良好的分散性。此外,还观察到 GO@PCE 可增强水泥的可操作性,加速水泥水化,降低氢氧化钙的结晶尺寸,并有效提高水泥砂浆的抗压强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Cement Research
Advances in Cement Research 工程技术-材料科学:综合
CiteScore
3.70
自引率
5.00%
发文量
56
审稿时长
3.2 months
期刊介绍: Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.
期刊最新文献
The regeneration of cement from completely recyclable mortar: effect of raw materials compositions Build-up formation in cement kiln preheater: qualitative and quantitative mineral characterization Effect of nano-silica@ chitosan phosphate ester on the mechanical properties and water resistance of magnesium oxychloride cement Application of biomineralization for enhancement of interfacial properties of rice husk ash blended concrete Strength characteristics of cement slurry in high geothermal tunnel environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1