Green-Emitting Carbon Quantum Dots: Highly Sensitive Temperature Sensing Probe in Nanocomposite and Lubrication System

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2024-03-11 DOI:10.3390/lubricants12030088
Jiannan Sun, Ke Yan, Pan Zhang, A. Pan, Xuehang Chen, Xinyi Shi
{"title":"Green-Emitting Carbon Quantum Dots: Highly Sensitive Temperature Sensing Probe in Nanocomposite and Lubrication System","authors":"Jiannan Sun, Ke Yan, Pan Zhang, A. Pan, Xuehang Chen, Xinyi Shi","doi":"10.3390/lubricants12030088","DOIUrl":null,"url":null,"abstract":"Carbon quantum dots (CQDs) have already demonstrated their utility as lubricant additives, and non-contact temperature sensing based on CQDs offers considerable potential for condition monitoring in mechanical, electrical, and other fields, as well as lubrication-temperature multifunctional applications in lubricants. In this paper, we have successfully synthesized and designed high-brightness carbon quantum dots/polyvinyl alcohol (PVA) temperature sensor thin film and dispersions of CQDs in a liquid paraffin lubrication system. Based on fluorescence intensity and the fluorescence intensity ratio, the carbon quantum dot/PVA film exhibited exponential temperature-dependent properties with a wide applicability range, a high goodness of fit (R2 > 0.99), and high relative thermal sensitivity (relative sensitivities of 1.74% K−1 and 1.39% K−1 for fluorescence intensity and fluorescence intensity ratio, respectively). In addition, based on the fluorescence intensity, the CQDs exhibited a wide temperature range (20–90 °C), a high goodness of fit (R2 > 0.99), and higher sensitivity (2.84% K−1) in a liquid paraffin lubrication system, which reflects the temperature responsive properties of carbon quantum dots as additives in lubrication systems. These findings provide convenient and effective possibilities for the sensing and monitoring of carbon quantum dots and their multifunctional applications under lubrication systems.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12030088","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon quantum dots (CQDs) have already demonstrated their utility as lubricant additives, and non-contact temperature sensing based on CQDs offers considerable potential for condition monitoring in mechanical, electrical, and other fields, as well as lubrication-temperature multifunctional applications in lubricants. In this paper, we have successfully synthesized and designed high-brightness carbon quantum dots/polyvinyl alcohol (PVA) temperature sensor thin film and dispersions of CQDs in a liquid paraffin lubrication system. Based on fluorescence intensity and the fluorescence intensity ratio, the carbon quantum dot/PVA film exhibited exponential temperature-dependent properties with a wide applicability range, a high goodness of fit (R2 > 0.99), and high relative thermal sensitivity (relative sensitivities of 1.74% K−1 and 1.39% K−1 for fluorescence intensity and fluorescence intensity ratio, respectively). In addition, based on the fluorescence intensity, the CQDs exhibited a wide temperature range (20–90 °C), a high goodness of fit (R2 > 0.99), and higher sensitivity (2.84% K−1) in a liquid paraffin lubrication system, which reflects the temperature responsive properties of carbon quantum dots as additives in lubrication systems. These findings provide convenient and effective possibilities for the sensing and monitoring of carbon quantum dots and their multifunctional applications under lubrication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色发光碳量子点:纳米复合材料和润滑系统中的高灵敏度温度传感探针
碳量子点(CQDs)已经证明了其作为润滑油添加剂的实用性,基于 CQDs 的非接触温度传感在机械、电气和其他领域的状态监测以及润滑油中的润滑-温度多功能应用方面具有相当大的潜力。本文成功合成并设计了高亮度碳量子点/聚乙烯醇(PVA)温度传感器薄膜以及 CQDs 在液体石蜡润滑系统中的分散体。根据荧光强度和荧光强度比,碳量子点/聚乙烯醇薄膜表现出指数温度依赖性,适用范围广,拟合度高(R2 > 0.99),相对热灵敏度高(荧光强度和荧光强度比的相对灵敏度分别为 1.74% K-1 和 1.39% K-1)。此外,基于荧光强度,碳量子点在液体石蜡润滑系统中表现出较宽的温度范围(20-90 °C)、较高的拟合优度(R2 > 0.99)和较高的灵敏度(2.84% K-1),这反映了碳量子点作为润滑系统添加剂的温度响应特性。这些发现为碳量子点在润滑系统中的传感和监测及其多功能应用提供了方便和有效的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Theoretical and Experimental Study of Flexible Structure Tilting Pad Bearings Considering Deformation Comparative Study on the Lubrication of Ti3C2TX MXene and Graphene Oxide Nanofluids for Titanium Alloys Study of Lubrication Performance and Churning Loss under Mixed Lubrication Mode in Gearbox Investigation on the Static Performance of Surface-Throttling Frictionless Pneumatic Cylinder through Finite Element Method Numerical Simulations and Experimental Validation of Squeeze Film Dampers for Aircraft Jet Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1