Design of a Microwave Quadrature Hybrid Coupler with Harmonic Suppression Using Artificial Neural Networks

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Active and Passive Electronic Components Pub Date : 2024-03-11 DOI:10.1155/2024/8722642
S. Roshani, Salah I. Yahya, Maher Assaad, Muhammad Akmal Chaudhary, F. Hazzazi, Yazeed Yasin Ghadi, Saeed Mostafaei, S. Roshani
{"title":"Design of a Microwave Quadrature Hybrid Coupler with Harmonic Suppression Using Artificial Neural Networks","authors":"S. Roshani, Salah I. Yahya, Maher Assaad, Muhammad Akmal Chaudhary, F. Hazzazi, Yazeed Yasin Ghadi, Saeed Mostafaei, S. Roshani","doi":"10.1155/2024/8722642","DOIUrl":null,"url":null,"abstract":"In this paper, a compact and simple structure of an elliptic microstrip lowpass filter (LPF) is designed for harmonic suppression in microwave quadrature hybrid coupler (QHC) applications. A radial resonator and a rectangular resonator are used to produce an elliptic LPF. The proposed LPF is used on the outer sides of the branch line coupler, which has improved the coupler harmonic suppression. Furthermore, artificial neural networks (ANNs) are incorporated to improve the LPF design process. The LPF best structure is obtained using the proposed ANN model. The proposed LPF has a compact size, which only occupies 16.4 mm × 7.3 mm equals to 0.164 λg × 0.073 λg, has a cut frequency of 2.2 GHz, and shows a sharp transmission band with a roll-off rate of 158.3 dB/GHz. Finally, the deigned QHC operates correctly at 1 GHz, which shows high harmonic suppression ability. The proposed QHC provides wide suppression band from 2.25 GHz up to more than 14 GHz, which can effectively suppress 3rd, to 14th harmonics. The proposed coupler features desirable parameters of S11, S21, S31, and S41, with magnitude of −21 dB, −3.4 dB, −3.3 dB, and −22.5 dB, at the operating frequency. The proposed approach mitigates the complexity of the circuit fabrication, compared with the previous methods while achieved desirable performances for the proposed QHC.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/8722642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a compact and simple structure of an elliptic microstrip lowpass filter (LPF) is designed for harmonic suppression in microwave quadrature hybrid coupler (QHC) applications. A radial resonator and a rectangular resonator are used to produce an elliptic LPF. The proposed LPF is used on the outer sides of the branch line coupler, which has improved the coupler harmonic suppression. Furthermore, artificial neural networks (ANNs) are incorporated to improve the LPF design process. The LPF best structure is obtained using the proposed ANN model. The proposed LPF has a compact size, which only occupies 16.4 mm × 7.3 mm equals to 0.164 λg × 0.073 λg, has a cut frequency of 2.2 GHz, and shows a sharp transmission band with a roll-off rate of 158.3 dB/GHz. Finally, the deigned QHC operates correctly at 1 GHz, which shows high harmonic suppression ability. The proposed QHC provides wide suppression band from 2.25 GHz up to more than 14 GHz, which can effectively suppress 3rd, to 14th harmonics. The proposed coupler features desirable parameters of S11, S21, S31, and S41, with magnitude of −21 dB, −3.4 dB, −3.3 dB, and −22.5 dB, at the operating frequency. The proposed approach mitigates the complexity of the circuit fabrication, compared with the previous methods while achieved desirable performances for the proposed QHC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络设计具有谐波抑制功能的微波正交混合耦合器
本文设计了一种结构紧凑简单的椭圆微带低通滤波器(LPF),用于抑制微波正交混合耦合器(QHC)应用中的谐波。一个径向谐振器和一个矩形谐振器被用来制作椭圆 LPF。提议的 LPF 用于支线耦合器的外侧,从而改善了耦合器的谐波抑制。此外,还采用了人工神经网络(ANN)来改进 LPF 的设计过程。利用所提出的人工神经网络模型,可以获得 LPF 的最佳结构。所提出的 LPF 体积小巧,仅占 16.4 mm × 7.3 mm,相当于 0.164 λg × 0.073 λg,截止频率为 2.2 GHz,传输频带清晰,滚降率为 158.3 dB/GHz。最后,设计的 QHC 可在 1 GHz 频率下正常工作,具有很强的谐波抑制能力。拟议的 QHC 提供了从 2.25 GHz 到超过 14 GHz 的宽抑制频带,可有效抑制 3 次至 14 次谐波。拟议的耦合器具有理想的 S11、S21、S31 和 S41 参数,在工作频率下的幅度分别为 -21 dB、-3.4 dB、-3.3 dB 和 -22.5 dB。与以前的方法相比,所提出的方法降低了电路制造的复杂性,同时使所提出的 QHC 达到了理想的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
期刊最新文献
Design of a Microwave Quadrature Hybrid Coupler with Harmonic Suppression Using Artificial Neural Networks Research on Equivalent Circuit Model of HVDC Valve and Calculation of Thyristor Junction Temperature Analysis and Design of High-Energy-Efficiency Amplifiers for Delta-Sigma Modulators An Ameliorated Small-Signal Model Parameter Extraction Method for GaN HEMTs up to 110 GHz with Short-Test Structure A Low Threshold Voltage Ultradynamic Voltage Scaling SRAM Write Assist Technique for High-Speed Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1