Predictive Modeling of Fracture Behavior in Ti6Al4V Alloys Manufactured by SLM Process

Mohsen Sarparast, M. Shafaie, Mohammad Davoodi, Ahmad Memaran Babakan, Hongyan Zhang
{"title":"Predictive Modeling of Fracture Behavior in Ti6Al4V Alloys Manufactured by SLM Process","authors":"Mohsen Sarparast, M. Shafaie, Mohammad Davoodi, Ahmad Memaran Babakan, Hongyan Zhang","doi":"10.3221/igf-esis.68.23","DOIUrl":null,"url":null,"abstract":"This study focuses on ductile fracture behavior prediction for Ti6Al4V alloys fabricated via Selective Laser Melting (SLM). A modified Gurson-Tvergaard-Needleman (GTN) model characterizes void growth and shear mechanisms under uniaxial stress. The research explores the impact of Artificial Neural Network (ANN) architecture, specifically hidden layers and neurons, on predicting fracture parameters. Results reveal that increasing hidden layers substantially enhances accuracy, particularly for fracture displacement. Notably, predicting maximum force requires fewer layers than fracture displacement. Using selected layers and neurons, the system consistently achieved R2-values exceeding 0.99 for both maximum force and fracture displacement. The study identifies the initial void volume fraction (f0) parameter as having the most significant influence on both properties.","PeriodicalId":507970,"journal":{"name":"Frattura ed Integrità Strutturale","volume":"49 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrità Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.68.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on ductile fracture behavior prediction for Ti6Al4V alloys fabricated via Selective Laser Melting (SLM). A modified Gurson-Tvergaard-Needleman (GTN) model characterizes void growth and shear mechanisms under uniaxial stress. The research explores the impact of Artificial Neural Network (ANN) architecture, specifically hidden layers and neurons, on predicting fracture parameters. Results reveal that increasing hidden layers substantially enhances accuracy, particularly for fracture displacement. Notably, predicting maximum force requires fewer layers than fracture displacement. Using selected layers and neurons, the system consistently achieved R2-values exceeding 0.99 for both maximum force and fracture displacement. The study identifies the initial void volume fraction (f0) parameter as having the most significant influence on both properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SLM 工艺制造的 Ti6Al4V 合金断裂行为预测模型
本研究的重点是预测通过选择性激光熔融(SLM)制造的 Ti6Al4V 合金的韧性断裂行为。改进的 Gurson-Tvergaard-Needleman (GTN) 模型描述了单轴应力下的空隙增长和剪切机制。研究探讨了人工神经网络(ANN)架构,特别是隐藏层和神经元对预测断裂参数的影响。结果表明,增加隐藏层可大幅提高准确性,尤其是断裂位移。值得注意的是,预测最大力所需的层数少于预测断裂位移所需的层数。通过使用选定的层和神经元,该系统在最大力和断裂位移方面的 R2 值均超过了 0.99。研究发现,初始空隙体积分数(f0)参数对这两项属性的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation coefficients of vibration signals and machine learning algorithm for structural damage assessment in beams under moving load Introduction and application of a drive-by damage detection methodology for bridges using variational mode decomposition Predicting Damage in Notched Functionally Graded Materials Plates through extended Finite Element Method based on computational simulations Behavior of Reinforced Lightweight Concrete Slab with Initial Cracks A Numerical Study on Predicting Bond-Slip Relationship of Reinforced Concrete using Surface Based Cohesive Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1