R. Cooke, Lidiane R Eloy, Sheila C Bosco, P. V. F. Lasmar, José M C de Simas, Tiago Leiva, S. R. de Medeiros
{"title":"An updated meta-analysis of the anti-methanogenic effects of monensin in beef cattle","authors":"R. Cooke, Lidiane R Eloy, Sheila C Bosco, P. V. F. Lasmar, José M C de Simas, Tiago Leiva, S. R. de Medeiros","doi":"10.1093/tas/txae032","DOIUrl":null,"url":null,"abstract":"\n Meta-analyses were performed to quantitatively summarize the effects of monensin on in vivo methane (CH4) production in beef cattle, and differentiate these outcomes according to dietary management, dose of monensin, and length of monensin supplementation. Data from 11 manuscripts describing 20 individual studies were used, and CH4 was converted to g/d when required. Studies were classified according to dose of monensin (mg/kg of diet dry matter), length of monensin supplementation prior to the last CH4 measurement, feeding management (ad libitum vs. limited-fed) and diet profile (high-forage or high-concentrate diets). Variance among studies were assessed using a χ² test of heterogeneity and calculated using I² statistics. Inclusion of monensin decreased (P < 0.01) CH4 production by 17.5 g/day when all studies are analyzed together. A moderate (P < 0.01) heterogeneity (I² = 55%) was detected for CH4 production estimates between studies; thus, meta-analyses were performed within classes. The reduction in CH4 differed (P < 0.01) according to dose of monensin, as it decreased (P < 0.01) by 25.6 g/d when the high recommended dose range was used (32 to 44 mg/kg), and tended to decrease (P ≤ 0.07) by 9.7 and 13.5 g/d when the moderate (≤ 31 mg/kg) and above recommended (≥ 45 mg/kg) doses were used, respectively. The reduction in CH4 also differed (P < 0.01) according to length of monensin supplementation. Monensin decreased (P ≤ 0.05) CH4 production by 24.3 g/d when supplemented for < 15 d, by 15.4 g/d when supplemented from 23 to 33 d, by 24.3 g/d when supplemented from 52 to 79 d, and tended to decrease (P = 0.06) CH4 production by 3.21 g/d when supplemented from 94 to 161 d. The reduction in CH4 did not differ (P = 0.37) according to diet profile, despite a 30% difference in reduction when monensin was added to high-forage (20.89 g/d) compared with high-concentrate diets (14.6 g/d). The reduction in CH4 tended to differ according to feeding management (P = 0.08), decreasing by 22.9 g/d (P < 0.01) when monensin was added to diets offered ad libitum, and by 11.5 g/d (P = 0.05) in limit-fed diets. Collectively, this study provides novel insights and further corroborates monensin as CH4 mitigation strategy in beef cattle operations. The most effective responses were observed during the first 79 d of monensin supplementation, and when monensin was included between 32 to 44 mg/kg of diet, was added to high-forage diets, and added to diets fed ad libitum.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"197 S573","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txae032","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-analyses were performed to quantitatively summarize the effects of monensin on in vivo methane (CH4) production in beef cattle, and differentiate these outcomes according to dietary management, dose of monensin, and length of monensin supplementation. Data from 11 manuscripts describing 20 individual studies were used, and CH4 was converted to g/d when required. Studies were classified according to dose of monensin (mg/kg of diet dry matter), length of monensin supplementation prior to the last CH4 measurement, feeding management (ad libitum vs. limited-fed) and diet profile (high-forage or high-concentrate diets). Variance among studies were assessed using a χ² test of heterogeneity and calculated using I² statistics. Inclusion of monensin decreased (P < 0.01) CH4 production by 17.5 g/day when all studies are analyzed together. A moderate (P < 0.01) heterogeneity (I² = 55%) was detected for CH4 production estimates between studies; thus, meta-analyses were performed within classes. The reduction in CH4 differed (P < 0.01) according to dose of monensin, as it decreased (P < 0.01) by 25.6 g/d when the high recommended dose range was used (32 to 44 mg/kg), and tended to decrease (P ≤ 0.07) by 9.7 and 13.5 g/d when the moderate (≤ 31 mg/kg) and above recommended (≥ 45 mg/kg) doses were used, respectively. The reduction in CH4 also differed (P < 0.01) according to length of monensin supplementation. Monensin decreased (P ≤ 0.05) CH4 production by 24.3 g/d when supplemented for < 15 d, by 15.4 g/d when supplemented from 23 to 33 d, by 24.3 g/d when supplemented from 52 to 79 d, and tended to decrease (P = 0.06) CH4 production by 3.21 g/d when supplemented from 94 to 161 d. The reduction in CH4 did not differ (P = 0.37) according to diet profile, despite a 30% difference in reduction when monensin was added to high-forage (20.89 g/d) compared with high-concentrate diets (14.6 g/d). The reduction in CH4 tended to differ according to feeding management (P = 0.08), decreasing by 22.9 g/d (P < 0.01) when monensin was added to diets offered ad libitum, and by 11.5 g/d (P = 0.05) in limit-fed diets. Collectively, this study provides novel insights and further corroborates monensin as CH4 mitigation strategy in beef cattle operations. The most effective responses were observed during the first 79 d of monensin supplementation, and when monensin was included between 32 to 44 mg/kg of diet, was added to high-forage diets, and added to diets fed ad libitum.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.