Urban forest analysis: species classification using machine learning and remote sensing data

M. V. Platonova, A. V. Kukharskii, E. B. Talovskaya, G. I. Lazorenko
{"title":"Urban forest analysis: species classification using machine learning and remote sensing data","authors":"M. V. Platonova, A. V. Kukharskii, E. B. Talovskaya, G. I. Lazorenko","doi":"10.18303/2619-1563-2023-4-36","DOIUrl":null,"url":null,"abstract":"Effective management of urban forests requires an integrated approach, starting with a complete inventory of their biodiversity. At the moment, data on the floristic composition of urban forests in Siberian cities is either limited or fragmentary. The purpose of this study is to classify urban forests by species and determine their ontogenetic state using remote sensing materials. This study aims to deeply analyze the structure of urban forests using remote sensing data, in particular the use of unmanned aerial vehicles.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2023-4-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective management of urban forests requires an integrated approach, starting with a complete inventory of their biodiversity. At the moment, data on the floristic composition of urban forests in Siberian cities is either limited or fragmentary. The purpose of this study is to classify urban forests by species and determine their ontogenetic state using remote sensing materials. This study aims to deeply analyze the structure of urban forests using remote sensing data, in particular the use of unmanned aerial vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市森林分析:利用机器学习和遥感数据进行物种分类
有效管理城市森林需要采取综合方法,首先要对城市森林的生物多样性进行全面清查。目前,有关西伯利亚城市森林植物组成的数据要么有限,要么零散。本研究的目的是利用遥感材料对城市森林进行物种分类,并确定其本体状态。本研究旨在利用遥感数据,特别是利用无人驾驶飞行器,深入分析城市森林的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete element based numerical simulation of granular material fracturing Fan mechanism creating dynamic ruptures with high permeability at seismogenic depths of the Earth’s crust Research of the microstructure features of Bazhenov deposits and selection of the optimal model for creating a digital twin of the rock Multiscale geomechanical modeling taking into account the evolution of the microstructure of the geological media Transient electromagnetic cross-borehole exploration for monitoring the state of the cryolithozone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1