Normally-off GaON/p-GaN gate HEMTs with using selective plasma oxidation: from structural characterization, performance improvement to physical mechanism
{"title":"Normally-off GaON/p-GaN gate HEMTs with using selective plasma oxidation: from structural characterization, performance improvement to physical mechanism","authors":"Nengtao Wu, Zhiheng Xing, L. Luo, Guoqiang Li","doi":"10.1088/1361-6641/ad3112","DOIUrl":null,"url":null,"abstract":"\n In this letter, a p-GaN gate high-electron-mobility transistor (HEMT) with a high threshold voltage and better gate reliability was demonstrated by using selective plasma oxidation (SPO) and an additional low-temperature annealing step before gate metal is evaporated. After the SPO, a gallium oxynitride (GaON) dielectric layer was formed on the surface of p-GaN under the gate metal, and was studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), high-resolution transmission electron microscopy (HR-TEM) and energy dispersion spectroscopy (EDS). In addition, the fabricated metal/GaON/p-GaN gate HEMT exhibited a large threshold voltage (VTH) improvement from 1.46 V to 2.47 V. Furthermore, the forward gate breakdown voltage (VGS,BD) increased from 7.55 V to 11.10 V, and the maximum forward gate operating voltage (VGS-max) significantly improved from 5.0 V to 7.80 V for a ten-year lifetime with a 63.2% failure rate. Kelvin Probe Force Microscopy (KPFM) reveals that the surface potential increased after SPO, and the shift of valence band maximum (VBM) obtained by XPS spectra was 0.7 eV lower than that of the p-GaN, which further improves the Schottky barrier height (SBH) at the gate metal/GaON interfaces to holes, thereby improving VTH and reducing IGS of the device. As a barrier layer, GaON suppressed the injection of carrier into the depletion region under a high electric field and enhanced the reliability of the gate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad3112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, a p-GaN gate high-electron-mobility transistor (HEMT) with a high threshold voltage and better gate reliability was demonstrated by using selective plasma oxidation (SPO) and an additional low-temperature annealing step before gate metal is evaporated. After the SPO, a gallium oxynitride (GaON) dielectric layer was formed on the surface of p-GaN under the gate metal, and was studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), high-resolution transmission electron microscopy (HR-TEM) and energy dispersion spectroscopy (EDS). In addition, the fabricated metal/GaON/p-GaN gate HEMT exhibited a large threshold voltage (VTH) improvement from 1.46 V to 2.47 V. Furthermore, the forward gate breakdown voltage (VGS,BD) increased from 7.55 V to 11.10 V, and the maximum forward gate operating voltage (VGS-max) significantly improved from 5.0 V to 7.80 V for a ten-year lifetime with a 63.2% failure rate. Kelvin Probe Force Microscopy (KPFM) reveals that the surface potential increased after SPO, and the shift of valence band maximum (VBM) obtained by XPS spectra was 0.7 eV lower than that of the p-GaN, which further improves the Schottky barrier height (SBH) at the gate metal/GaON interfaces to holes, thereby improving VTH and reducing IGS of the device. As a barrier layer, GaON suppressed the injection of carrier into the depletion region under a high electric field and enhanced the reliability of the gate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.