Carbon cycle: ESP and UAV data processing approaches for forest ecosystem monitoring examples

M. V. Platonova, V. D. Kotler, A. V. Kukharskii, S. Y. Ivanov
{"title":"Carbon cycle: ESP and UAV data processing approaches for forest ecosystem monitoring examples","authors":"M. V. Platonova, V. D. Kotler, A. V. Kukharskii, S. Y. Ivanov","doi":"10.18303/2619-1563-2023-4-45","DOIUrl":null,"url":null,"abstract":"The review article provides a comprehensive overview of modern methods and approaches for processing large volumes of observational data in the context of monitoring forest ecosystems. The article shows examples of processing various data obtained using Earth remote sensing (ERS) and unmanned aerial vehicles (UAVs). Particular attention is paid to assessing the carbon cycle; the practice of using machine learning methods in processing monitoring data is also discussed in detail, as they play a key role in increasing the accuracy of the resulting estimates. The article also discusses modern geographic information systems designed for complex analysis of data from various natural complexes.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"43 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2023-4-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The review article provides a comprehensive overview of modern methods and approaches for processing large volumes of observational data in the context of monitoring forest ecosystems. The article shows examples of processing various data obtained using Earth remote sensing (ERS) and unmanned aerial vehicles (UAVs). Particular attention is paid to assessing the carbon cycle; the practice of using machine learning methods in processing monitoring data is also discussed in detail, as they play a key role in increasing the accuracy of the resulting estimates. The article also discusses modern geographic information systems designed for complex analysis of data from various natural complexes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳循环:用于森林生态系统监测实例的静电除尘器和无人飞行器数据处理方法
这篇综述文章全面概述了在监测森林生态系统方面处理大量观测数据的现代方法和途径。文章举例说明了利用地球遥感(ERS)和无人飞行器(UAV)获取的各种数据的处理方法。文章特别关注对碳循环的评估;还详细讨论了在处理监测数据时使用机器学习方法的做法,因为这些方法在提高由此得出的估算结果的准确性方面发挥着关键作用。文章还讨论了为复杂分析各种自然综合体数据而设计的现代地理信息系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete element based numerical simulation of granular material fracturing Fan mechanism creating dynamic ruptures with high permeability at seismogenic depths of the Earth’s crust Research of the microstructure features of Bazhenov deposits and selection of the optimal model for creating a digital twin of the rock Multiscale geomechanical modeling taking into account the evolution of the microstructure of the geological media Transient electromagnetic cross-borehole exploration for monitoring the state of the cryolithozone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1