A Comprehensive Feature Engineering Approach for Breast Cancer Dataset

Shambhvi Sharma, Monica Sahni
{"title":"A Comprehensive Feature Engineering Approach for Breast Cancer Dataset","authors":"Shambhvi Sharma, Monica Sahni","doi":"10.4108/eetpht.10.5327","DOIUrl":null,"url":null,"abstract":"Breast cancer continues to pose a significant challenge in the field of healthcare, serving as the primary cause of cancer-related deaths in women on a global scale. The present study aims to investigate the intricate relationship between breast cancer, statistical analysis, and feature engineering. By conducting an extensive analysis of a comprehensive dataset and employing sophisticated statistical methodologies, this research endeavor aims to unveil concealed insights that can enrich the medical community's existing knowledge base. Through the implementation of rigorous feature selection and extraction methodologies, the overarching aim is to augment the comprehension of breast cancer. Moreover, the study showcases the successful incorporation of univariate and bivariate analysis in order to enhance the accuracy of diagnostic procedures. The convergence of these disciplines exhibits considerable promise in the realm of breast cancer detection and prediction, facilitating cooperative endeavours aimed at addressing this widespread malignancy.","PeriodicalId":36936,"journal":{"name":"EAI Endorsed Transactions on Pervasive Health and Technology","volume":"40 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Pervasive Health and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetpht.10.5327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer continues to pose a significant challenge in the field of healthcare, serving as the primary cause of cancer-related deaths in women on a global scale. The present study aims to investigate the intricate relationship between breast cancer, statistical analysis, and feature engineering. By conducting an extensive analysis of a comprehensive dataset and employing sophisticated statistical methodologies, this research endeavor aims to unveil concealed insights that can enrich the medical community's existing knowledge base. Through the implementation of rigorous feature selection and extraction methodologies, the overarching aim is to augment the comprehension of breast cancer. Moreover, the study showcases the successful incorporation of univariate and bivariate analysis in order to enhance the accuracy of diagnostic procedures. The convergence of these disciplines exhibits considerable promise in the realm of breast cancer detection and prediction, facilitating cooperative endeavours aimed at addressing this widespread malignancy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌数据集的综合特征工程方法
乳腺癌仍然是医疗保健领域的一个重大挑战,是全球妇女因癌症死亡的主要原因。本研究旨在探讨乳腺癌、统计分析和特征工程之间错综复杂的关系。通过对综合数据集进行广泛分析并采用复杂的统计方法,本研究旨在揭示隐藏的见解,从而丰富医学界现有的知识库。通过实施严格的特征选择和提取方法,本研究的总体目标是增强对乳腺癌的理解。此外,该研究还展示了单变量和双变量分析的成功结合,以提高诊断程序的准确性。这些学科的融合为乳腺癌的检测和预测领域带来了巨大希望,促进了旨在解决这一广泛存在的恶性肿瘤问题的合作努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EAI Endorsed Transactions on Pervasive Health and Technology
EAI Endorsed Transactions on Pervasive Health and Technology Computer Science-Computer Science (miscellaneous)
CiteScore
3.50
自引率
0.00%
发文量
14
审稿时长
10 weeks
期刊最新文献
Thermal image processing system to monitor muscle warm-up in students prior to their sports activities Individual Intervention and Assessment of Students' Physical Fitness Based on the "Three Precision" Applet and Mixed Strategy Optimised CNN Networks Research on Portable Intelligent Terminal and APP Application Analysis and Intelligent Monitoring Method of College Students' Health Status Research on 2D Animation Simulation Based on Artificial Intelligence and Biomechanical Modeling Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced Pneumonia Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1