{"title":"A comparison of soil water infiltration models of moistube irrigation","authors":"Binnan Li, Lixia Shen, Shuhui Liu","doi":"10.4081/ija.2024.2216","DOIUrl":null,"url":null,"abstract":"As a water-saving method, moistube irrigation has been widely used. To ensure the effectiveness of moistube irrigation the development of an infiltration prediction model under moistube irrigation based on the interaction of multiple factors is required. In this paper, soil water infiltration tests with different bulk densities (1.2 g/cm³, 1.3 g/cm³, and 1.4 g/cm³) and textures (loamy sand, sandy loam, and clay loam) under different pressure heads (1m, 1.5m, and 2m) were designed, and the test data were analyzed by gray correlation theory. The pressure head, bulk density, clay content, silt content, sand content, and initial water content were determined as input variables, and the model structure was composed with two parameters of Kostiakov's model as output variables. Then, the genetic algorithm was used to optimize the back propagation neural network and the particle swarm algorithm to optimize the support vector machine. The soil moisture prediction model under moistube irrigation was established, finally the model was compared and analyzed. The results showed that the consistency effect of the two models was good. However, compared with the BP neural network prediction model optimized by genetic algorithm, the particle swarm algorithm optimized the support vector machine based moistube irrigation prediction model had higher accuracy. The results of this experiment can provide theoretical support for the exploration and modelling prediction of soil water infiltration under moistube irrigation.","PeriodicalId":14618,"journal":{"name":"Italian Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/ija.2024.2216","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
As a water-saving method, moistube irrigation has been widely used. To ensure the effectiveness of moistube irrigation the development of an infiltration prediction model under moistube irrigation based on the interaction of multiple factors is required. In this paper, soil water infiltration tests with different bulk densities (1.2 g/cm³, 1.3 g/cm³, and 1.4 g/cm³) and textures (loamy sand, sandy loam, and clay loam) under different pressure heads (1m, 1.5m, and 2m) were designed, and the test data were analyzed by gray correlation theory. The pressure head, bulk density, clay content, silt content, sand content, and initial water content were determined as input variables, and the model structure was composed with two parameters of Kostiakov's model as output variables. Then, the genetic algorithm was used to optimize the back propagation neural network and the particle swarm algorithm to optimize the support vector machine. The soil moisture prediction model under moistube irrigation was established, finally the model was compared and analyzed. The results showed that the consistency effect of the two models was good. However, compared with the BP neural network prediction model optimized by genetic algorithm, the particle swarm algorithm optimized the support vector machine based moistube irrigation prediction model had higher accuracy. The results of this experiment can provide theoretical support for the exploration and modelling prediction of soil water infiltration under moistube irrigation.
期刊介绍:
The Italian Journal of Agronomy (IJA) is the official journal of the Italian Society for Agronomy. It publishes quarterly original articles and reviews reporting experimental and theoretical contributions to agronomy and crop science, with main emphasis on original articles from Italy and countries having similar agricultural conditions. The journal deals with all aspects of Agricultural and Environmental Sciences, the interactions between cropping systems and sustainable development. Multidisciplinary articles that bridge agronomy with ecology, environmental and social sciences are also welcome.