Spatial and seasonal variation in disinfection byproducts concentrations in a rural public drinking water system: A case study of Martin County, Kentucky, USA
J. Unrine, Nina McCoy, W. J. Christian, Yogesh Gautam, L. Ormsbee, Wayne Sanderson, Ricki Draper, Madison Mooney, Mary Cromer, Kelly Pennell, A. G. Hoover
{"title":"Spatial and seasonal variation in disinfection byproducts concentrations in a rural public drinking water system: A case study of Martin County, Kentucky, USA","authors":"J. Unrine, Nina McCoy, W. J. Christian, Yogesh Gautam, L. Ormsbee, Wayne Sanderson, Ricki Draper, Madison Mooney, Mary Cromer, Kelly Pennell, A. G. Hoover","doi":"10.1371/journal.pwat.0000227","DOIUrl":null,"url":null,"abstract":"To increase our understanding of the factors that influence formation of disinfection byproducts (DBPs) in rural drinking systems, we investigated the spatial and seasonal variation in trihalomethane (THM) and haloacetic acid (HAA) concentrations in relation to various chemical and physical variables in a rural public drinking water system in Martin County, Kentucky, USA. We collected drinking water samples from 97 individual homes over the course of one year and analyzed them for temperature, electrical conductivity, pH, free chlorine, total chlorine, THMs (chloroform, bromodichloromethane, dibromochloromethane, dichlorobromomethane, and bromoform) and HAAs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid). Spatial autocorrelation analysis showed only weak overall clustering for HAA concentrations and none for THMs. The relationship between modeled water age and TTHM or HAA5 concentrations varied seasonally. In contrast, there was strong variation for both HAA and THMs, with concentrations of HAA peaking in mid-summer and THMs peaking in early fall. Multiple regression analysis revealed that THM concentrations were strongly correlated with conductivity, while HAA concentrations were more strongly correlated with water temperature. Individual DBP species that only contained chlorine halogen groups were strongly correlated with temperature, while compounds containing bromine were more strongly correlated with conductivity. Further investigation revealed that increased drinking water conductivity associated with low discharge of the Tug Fork River, the source water, is highly correlated with increased concentrations of bromide. Discharge and conductivity of the Tug Fork River changed dramatically through the year contributing to a seasonal peak in bromide concentrations in the late summer and early fall and appeared to be a driver of brominated THM concentrations. Brominated DBPs tend to have higher toxicity than DBPs containing only chlorine, therefore this study provides important insight into the seasonal factors driving risk from exposure to DBPs in rural drinking water systems impacted by bromide.","PeriodicalId":93672,"journal":{"name":"PLOS water","volume":"30 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pwat.0000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To increase our understanding of the factors that influence formation of disinfection byproducts (DBPs) in rural drinking systems, we investigated the spatial and seasonal variation in trihalomethane (THM) and haloacetic acid (HAA) concentrations in relation to various chemical and physical variables in a rural public drinking water system in Martin County, Kentucky, USA. We collected drinking water samples from 97 individual homes over the course of one year and analyzed them for temperature, electrical conductivity, pH, free chlorine, total chlorine, THMs (chloroform, bromodichloromethane, dibromochloromethane, dichlorobromomethane, and bromoform) and HAAs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid). Spatial autocorrelation analysis showed only weak overall clustering for HAA concentrations and none for THMs. The relationship between modeled water age and TTHM or HAA5 concentrations varied seasonally. In contrast, there was strong variation for both HAA and THMs, with concentrations of HAA peaking in mid-summer and THMs peaking in early fall. Multiple regression analysis revealed that THM concentrations were strongly correlated with conductivity, while HAA concentrations were more strongly correlated with water temperature. Individual DBP species that only contained chlorine halogen groups were strongly correlated with temperature, while compounds containing bromine were more strongly correlated with conductivity. Further investigation revealed that increased drinking water conductivity associated with low discharge of the Tug Fork River, the source water, is highly correlated with increased concentrations of bromide. Discharge and conductivity of the Tug Fork River changed dramatically through the year contributing to a seasonal peak in bromide concentrations in the late summer and early fall and appeared to be a driver of brominated THM concentrations. Brominated DBPs tend to have higher toxicity than DBPs containing only chlorine, therefore this study provides important insight into the seasonal factors driving risk from exposure to DBPs in rural drinking water systems impacted by bromide.