LDH sealing for PEO coated friction stir welded AZ31/AA5754 materials

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-08-01 DOI:10.1016/j.nanoms.2024.02.009
{"title":"LDH sealing for PEO coated friction stir welded AZ31/AA5754 materials","authors":"","doi":"10.1016/j.nanoms.2024.02.009","DOIUrl":null,"url":null,"abstract":"<div><p>The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion. Layered double hydroxides (LDHs) can be an example of such coatings, which were previously successfully obtained <em>in situ</em> on individual materials. In addition, the possibility of LDH growth (including LDH growth in the presence of chelating agents) on the surface of plasma electrolytic oxidation (PEO)-coated metals was previously shown. This PEO ​+ ​LDH combination could improve both corrosion and mechanical characteristics of the system. The possibility of LDHs formation <em>in situ</em> on the surface of PEO-coated friction stir welded (FSW) magnesium-aluminum materials (AZ31/AA5754 system was selected as a model one) was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N’,N’-tetraacetic acid (DHPTA) as a chelating agent, which was selected based on analysis of respective metal-ligand compounds stability. LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte. The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965124000205/pdfft?md5=31b26272b98d0eb6511f7d4a0464b30a&pid=1-s2.0-S2589965124000205-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion. Layered double hydroxides (LDHs) can be an example of such coatings, which were previously successfully obtained in situ on individual materials. In addition, the possibility of LDH growth (including LDH growth in the presence of chelating agents) on the surface of plasma electrolytic oxidation (PEO)-coated metals was previously shown. This PEO ​+ ​LDH combination could improve both corrosion and mechanical characteristics of the system. The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded (FSW) magnesium-aluminum materials (AZ31/AA5754 system was selected as a model one) was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N’,N’-tetraacetic acid (DHPTA) as a chelating agent, which was selected based on analysis of respective metal-ligand compounds stability. LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte. The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 PEO 涂层搅拌摩擦焊接 AZ31/AA5754 材料的 LDH 密封件
由于需要在轻质结构中结合各种金属,因此需要开发能够防止电化学腐蚀的涂层。层状双氢氧化物(LDHs)就是此类涂层的一个例子,以前曾成功地在单个材料上就地获得过这种涂层。此外,之前还显示了 LDH 在等离子电解氧化(PEO)涂层金属表面生长的可能性(包括 LDH 在螯合剂存在的情况下生长)。这种 PEO + LDH 的组合可以改善系统的腐蚀和机械特性。在 1,3-二氨基-2-羟基丙烷-N,N,N',N'-四乙酸(DHPTA)作为螯合剂存在的情况下,证明了在 PEO 涂层的镁铝材料(选取 AZ31/AA5754 系统作为模型)表面原位形成 LDHs 的可能性。LDHs 在环境压力下生长,电解液中不添加碳酸盐。所得涂层在耐腐蚀性和硬度方面都很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1