{"title":"LDH sealing for PEO coated friction stir welded AZ31/AA5754 materials","authors":"","doi":"10.1016/j.nanoms.2024.02.009","DOIUrl":null,"url":null,"abstract":"<div><p>The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion. Layered double hydroxides (LDHs) can be an example of such coatings, which were previously successfully obtained <em>in situ</em> on individual materials. In addition, the possibility of LDH growth (including LDH growth in the presence of chelating agents) on the surface of plasma electrolytic oxidation (PEO)-coated metals was previously shown. This PEO + LDH combination could improve both corrosion and mechanical characteristics of the system. The possibility of LDHs formation <em>in situ</em> on the surface of PEO-coated friction stir welded (FSW) magnesium-aluminum materials (AZ31/AA5754 system was selected as a model one) was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N’,N’-tetraacetic acid (DHPTA) as a chelating agent, which was selected based on analysis of respective metal-ligand compounds stability. LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte. The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 4","pages":"Pages 428-442"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965124000205/pdfft?md5=31b26272b98d0eb6511f7d4a0464b30a&pid=1-s2.0-S2589965124000205-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion. Layered double hydroxides (LDHs) can be an example of such coatings, which were previously successfully obtained in situ on individual materials. In addition, the possibility of LDH growth (including LDH growth in the presence of chelating agents) on the surface of plasma electrolytic oxidation (PEO)-coated metals was previously shown. This PEO + LDH combination could improve both corrosion and mechanical characteristics of the system. The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded (FSW) magnesium-aluminum materials (AZ31/AA5754 system was selected as a model one) was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N’,N’-tetraacetic acid (DHPTA) as a chelating agent, which was selected based on analysis of respective metal-ligand compounds stability. LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte. The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.