DI-VTR: Dual inter-modal interaction model for video-text retrieval

{"title":"DI-VTR: Dual inter-modal interaction model for video-text retrieval","authors":"","doi":"10.1016/j.jiixd.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Video-text retrieval is a challenging task for multimodal information processing due to the semantic gap between different modalities. However, most existing methods do not fully mine the intra-modal interactions, as with the temporal correlation of video frames, which results in poor matching performance. Additionally, the imbalanced semantic information between videos and texts also leads to difficulty in the alignment of the two modalities. To this end, we propose a dual inter-modal interaction network for video-text retrieval, i.e., DI-VTR. To learn the intra-modal interaction of video frames, we design a contextual-related video encoder to obtain more fine-grained content-oriented video representations. We also propose a dual inter-modal interaction module to accomplish accurate multilingual alignment between the video and text modalities by introducing multilingual text to improve the representation ability of text semantic features. Extensive experimental results on commonly-used video-text retrieval datasets, including MSR-VTT, MSVD and VATEX, show that the proposed method achieves significantly improved performance compared with state-of-the-art methods.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 5","pages":"Pages 388-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294971592400026X/pdfft?md5=99a5f02c39ebbf60a2f3d5a6ebd243c0&pid=1-s2.0-S294971592400026X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971592400026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video-text retrieval is a challenging task for multimodal information processing due to the semantic gap between different modalities. However, most existing methods do not fully mine the intra-modal interactions, as with the temporal correlation of video frames, which results in poor matching performance. Additionally, the imbalanced semantic information between videos and texts also leads to difficulty in the alignment of the two modalities. To this end, we propose a dual inter-modal interaction network for video-text retrieval, i.e., DI-VTR. To learn the intra-modal interaction of video frames, we design a contextual-related video encoder to obtain more fine-grained content-oriented video representations. We also propose a dual inter-modal interaction module to accomplish accurate multilingual alignment between the video and text modalities by introducing multilingual text to improve the representation ability of text semantic features. Extensive experimental results on commonly-used video-text retrieval datasets, including MSR-VTT, MSVD and VATEX, show that the proposed method achieves significantly improved performance compared with state-of-the-art methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DI-VTR:用于视频文本检索的双模态交互模型
由于不同模态之间存在语义差距,视频-文本检索是多模态信息处理中一项具有挑战性的任务。然而,现有的大多数方法并不能充分挖掘模态内的交互作用,如视频帧的时间相关性,从而导致匹配效果不佳。此外,视频和文本之间语义信息的不平衡也会导致两种模态难以对齐。为此,我们提出了一种用于视频-文本检索的双模态交互网络,即 DI-VTR。为了学习视频帧的模内交互,我们设计了一种与上下文相关的视频编码器,以获得更精细的面向内容的视频表示。我们还提出了双模态间交互模块,通过引入多语言文本来提高文本语义特征的表征能力,从而实现视频模态和文本模态之间的多语言精确对齐。在常用的视频-文本检索数据集(包括 MSR-VTT、MSVD 和 VATEX)上进行的大量实验结果表明,与最先进的方法相比,所提出的方法显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Secure performance comparison for NOMA: Reconfigurable intelligent surface or amplify-and-forward relay? Editorial Board Structural knowledge-driven meta-learning for task offloading in vehicular networks with integrated communications, sensing and computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1