Jihyeon Song , Sunoh Choi , Jungtae Kim , Kyungmin Park , Cheolhee Park , Jonghyun Kim , Ikkyun Kim
{"title":"A study of the relationship of malware detection mechanisms using Artificial Intelligence","authors":"Jihyeon Song , Sunoh Choi , Jungtae Kim , Kyungmin Park , Cheolhee Park , Jonghyun Kim , Ikkyun Kim","doi":"10.1016/j.icte.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Implementation of malware detection using Artificial Intelligence (AI) has emerged as a significant research theme to combat evolving various types of malwares. Researchers implement various detection mechanisms using shallow and deep learning models to counter new malware, and they continue to develop these mechanisms today. However, in the field of malware detection using AI, there are difficulties in collecting data, and it is difficult to compare research content and performance with related studies. Meanwhile, the number of well-organized papers is not sufficient to understand the overall research flow of these related studies. Before starting new research, researchers need to analyze the current state of research in the malware detection field they want to study. Therefore, based on these requirements, we present a summary of the general criteria related to malware detection and a classification table for detection mechanisms. Additionally, we have organized many studies in the field of various types of malware detection so that they can be viewed at a glance. We hope that the provided survey can help new researchers quickly understand the research flow in the field of AI-based malware detection and establish the direction for future research.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 632-649"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000298/pdfft?md5=8c3370dad7e696a91dedc176306bffcb&pid=1-s2.0-S2405959524000298-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000298","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Implementation of malware detection using Artificial Intelligence (AI) has emerged as a significant research theme to combat evolving various types of malwares. Researchers implement various detection mechanisms using shallow and deep learning models to counter new malware, and they continue to develop these mechanisms today. However, in the field of malware detection using AI, there are difficulties in collecting data, and it is difficult to compare research content and performance with related studies. Meanwhile, the number of well-organized papers is not sufficient to understand the overall research flow of these related studies. Before starting new research, researchers need to analyze the current state of research in the malware detection field they want to study. Therefore, based on these requirements, we present a summary of the general criteria related to malware detection and a classification table for detection mechanisms. Additionally, we have organized many studies in the field of various types of malware detection so that they can be viewed at a glance. We hope that the provided survey can help new researchers quickly understand the research flow in the field of AI-based malware detection and establish the direction for future research.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.