Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-01 DOI:10.2478/cait-2024-0010
Dương Thăng Long
{"title":"Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition","authors":"Dương Thăng Long","doi":"10.2478/cait-2024-0010","DOIUrl":null,"url":null,"abstract":"\n Facial Expression Recognition (FER) is a fundamental component of human communication with numerous potential applications. Convolutional neural networks, particularly those employing advanced architectures like Densely connected Networks (DenseNets), have demonstrated remarkable success in FER. Additionally, attention mechanisms have been harnessed to enhance feature extraction by focusing on critical image regions. This can induce more efficient models for image classification. This study introduces an efficient DenseNet model that utilizes a fusion of channel and spatial attention for FER, which capitalizes on the respective strengths to enhance feature extraction while also reducing model complexity in terms of parameters. The model is evaluated across five popular datasets: JAFFE, CK+, OuluCASIA, KDEF, and RAF-DB. The results indicate an accuracy of at least 99.94% for four lab-controlled datasets, which surpasses the accuracy of all other compared methods. Furthermore, the model demonstrates an accuracy of 83.18% with training from scratch on the real-world RAF-DB dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"735 ","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2024-0010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Facial Expression Recognition (FER) is a fundamental component of human communication with numerous potential applications. Convolutional neural networks, particularly those employing advanced architectures like Densely connected Networks (DenseNets), have demonstrated remarkable success in FER. Additionally, attention mechanisms have been harnessed to enhance feature extraction by focusing on critical image regions. This can induce more efficient models for image classification. This study introduces an efficient DenseNet model that utilizes a fusion of channel and spatial attention for FER, which capitalizes on the respective strengths to enhance feature extraction while also reducing model complexity in terms of parameters. The model is evaluated across five popular datasets: JAFFE, CK+, OuluCASIA, KDEF, and RAF-DB. The results indicate an accuracy of at least 99.94% for four lab-controlled datasets, which surpasses the accuracy of all other compared methods. Furthermore, the model demonstrates an accuracy of 83.18% with training from scratch on the real-world RAF-DB dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合通道和空间注意力的高效密集网络模型用于面部表情识别
面部表情识别(FER)是人类交流的一个基本组成部分,具有众多潜在应用。卷积神经网络,尤其是采用密集连接网络(DenseNets)等先进架构的卷积神经网络,在面部表情识别方面取得了显著的成功。此外,人们还利用注意力机制,通过聚焦关键图像区域来增强特征提取。这可以为图像分类提供更高效的模型。本研究介绍了一种高效的 DenseNet 模型,该模型将信道注意力和空间注意力融合用于 FER,利用各自的优势加强特征提取,同时降低模型参数的复杂性。该模型在五个流行的数据集上进行了评估:JAFFE、CK+、OuluCASIA、KDEF 和 RAF-DB。结果表明,四个实验室控制数据集的准确率至少为 99.94%,超过了所有其他比较方法的准确率。此外,该模型在真实世界 RAF-DB 数据集上从头开始训练,准确率达到 83.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Programmable Aptamer-Controlled Fibrinogenesis Using Dynamic DNA Networks and Synthetic Transcription Machineries Chalcogenoviologen-Based Surface and Interface Chemistry for Optoelectronic Applications: From Molecular Design to Functional Devices. Issue Publication Information Issue Editorial Masthead Regulating Lanthanide Single-Molecule Magnets with Coordination Geometry and Organometallic Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1