{"title":"Prediction model for lower limb amputation in hospitalized diabetic foot patients using classification and regression trees","authors":"","doi":"10.1016/j.fas.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The decision to perform amputation of a limb in a patient with diabetic foot ulcer (DFU) is not an easy task. Prediction models aim to help the surgeon in decision making scenarios. Currently there are no prediction model to determine lower limb amputation during the first 30 days of hospitalization for patients with DFU.</p></div><div><h3>Methods</h3><p>Classification And Regression Tree analysis was applied on data from a retrospective cohort of patients hospitalized for the management of diabetic foot ulcer, using an existing database from two Orthopaedics and Traumatology departments. The secondary analysis identified independent variables that can predict lower limb amputation (mayor or minor) during the first 30 days of hospitalization.</p></div><div><h3>Results</h3><p>Of the 573 patients in the database, 290 feet underwent a lower limb amputation during the first 30 days of hospitalization. Six different models were developed using a loss matrix to evaluate the error of not detecting false negatives. The selected tree produced 13 terminal nodes and after the pruning process, only one division remained in the optimal tree (Sensitivity: 69%, Specificity: 75%, Area Under the Curve: 0.76, Complexity Parameter: 0.01, Error: 0.85). Among the studied variables, the <em>Wagner classification</em> with a cut-off grade of 3 exceeded others in its predicting capacity<em>.</em></p></div><div><h3>Conclusions</h3><p>Wagner classification was the variable with the best capacity for predicting amputation within 30 days. Infectious state and vascular occlusion described indirectly by this classification reflects the importance of taking quick decisions in those patients with a higher compromise of these two conditions. Finally, an external validation of the model is still required.</p></div><div><h3>Level of evidence</h3><p>III</p></div>","PeriodicalId":48743,"journal":{"name":"Foot and Ankle Surgery","volume":"30 6","pages":"Pages 471-479"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1268773124000687/pdfft?md5=f3c5f52e3d9789958c7965a27a9f57bf&pid=1-s2.0-S1268773124000687-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foot and Ankle Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1268773124000687","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The decision to perform amputation of a limb in a patient with diabetic foot ulcer (DFU) is not an easy task. Prediction models aim to help the surgeon in decision making scenarios. Currently there are no prediction model to determine lower limb amputation during the first 30 days of hospitalization for patients with DFU.
Methods
Classification And Regression Tree analysis was applied on data from a retrospective cohort of patients hospitalized for the management of diabetic foot ulcer, using an existing database from two Orthopaedics and Traumatology departments. The secondary analysis identified independent variables that can predict lower limb amputation (mayor or minor) during the first 30 days of hospitalization.
Results
Of the 573 patients in the database, 290 feet underwent a lower limb amputation during the first 30 days of hospitalization. Six different models were developed using a loss matrix to evaluate the error of not detecting false negatives. The selected tree produced 13 terminal nodes and after the pruning process, only one division remained in the optimal tree (Sensitivity: 69%, Specificity: 75%, Area Under the Curve: 0.76, Complexity Parameter: 0.01, Error: 0.85). Among the studied variables, the Wagner classification with a cut-off grade of 3 exceeded others in its predicting capacity.
Conclusions
Wagner classification was the variable with the best capacity for predicting amputation within 30 days. Infectious state and vascular occlusion described indirectly by this classification reflects the importance of taking quick decisions in those patients with a higher compromise of these two conditions. Finally, an external validation of the model is still required.
期刊介绍:
Foot and Ankle Surgery is essential reading for everyone interested in the foot and ankle and its disorders. The approach is broad and includes all aspects of the subject from basic science to clinical management. Problems of both children and adults are included, as is trauma and chronic disease. Foot and Ankle Surgery is the official journal of European Foot and Ankle Society.
The aims of this journal are to promote the art and science of ankle and foot surgery, to publish peer-reviewed research articles, to provide regular reviews by acknowledged experts on common problems, and to provide a forum for discussion with letters to the Editors. Reviews of books are also published. Papers are invited for possible publication in Foot and Ankle Surgery on the understanding that the material has not been published elsewhere or accepted for publication in another journal and does not infringe prior copyright.