Jia-jia Liu , Xue Zhang , Bang-lan Cai , Man-man Qi , Yong-bin Chi , Bin Peng , Deng-hai Zhang
{"title":"Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells","authors":"Jia-jia Liu , Xue Zhang , Bang-lan Cai , Man-man Qi , Yong-bin Chi , Bin Peng , Deng-hai Zhang","doi":"10.1016/j.joim.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Research has shown that celastrol can effectively treat a variety of diseases, yet when passing a certain dosage threshold, celastrol becomes toxic, causing complications such as liver and kidney damage and erythrocytopenia, among others. With this dichotomy in mind, it is extremely important to find ways to preserve celastrol’s efficacy while reducing or preventing its toxicity.</p></div><div><h3>Methods</h3><p>In this study, insulin-resistant HepG2 (IR-HepG2) cells were prepared using palmitic acid and used for in vitro experiments. IR-HepG2 cells were treated with celastrol alone or in combination with N-acetylcysteine (NAC) or ferrostatin-1 (Fer-1) for 12, 24 or 48 h, at a range of doses. Cell counting kit-8 assay, Western blotting, quantitative reverse transcription-polymerase chain reaction, glucose consumption assessment, and flow cytometry were performed to measure celastrol’s cytotoxicity and whether the cell death was linked to ferroptosis.</p></div><div><h3>Results</h3><p>Celastrol treatment increased lipid oxidation and decreased expression of anti-ferroptosis proteins in IR-HepG2 cells. Celastrol downregulated glutathione peroxidase 4 (GPX4) mRNA. Molecular docking models predicted that solute carrier family 7 member 11 (SLC7A11) and GPX4 were covalently bound by celastrol. Importantly, we found for the first time that the application of ferroptosis inhibitors (especially NAC) was able to reduce celastrol’s toxicity while preserving its ability to improve insulin sensitivity in IR-HepG2 cells.</p></div><div><h3>Conclusion</h3><p>One potential mechanism of celastrol’s cytotoxicity is the induction of ferroptosis, which can be alleviated by treatment with ferroptosis inhibitors. These findings provide a new strategy to block celastrol’s toxicity while preserving its therapeutic effects.</p><p>Please cite this article as: Liu JJ, Zhang X, Qi MM, Chi YB, Cai BL, Peng B, Zhang DH. Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells. <em>J Integr Med</em>. 2024; 22(3): 286–294.</p></div>","PeriodicalId":48599,"journal":{"name":"Journal of Integrative Medicine-Jim","volume":"22 3","pages":"Pages 286-294"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Medicine-Jim","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095496424000311","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Research has shown that celastrol can effectively treat a variety of diseases, yet when passing a certain dosage threshold, celastrol becomes toxic, causing complications such as liver and kidney damage and erythrocytopenia, among others. With this dichotomy in mind, it is extremely important to find ways to preserve celastrol’s efficacy while reducing or preventing its toxicity.
Methods
In this study, insulin-resistant HepG2 (IR-HepG2) cells were prepared using palmitic acid and used for in vitro experiments. IR-HepG2 cells were treated with celastrol alone or in combination with N-acetylcysteine (NAC) or ferrostatin-1 (Fer-1) for 12, 24 or 48 h, at a range of doses. Cell counting kit-8 assay, Western blotting, quantitative reverse transcription-polymerase chain reaction, glucose consumption assessment, and flow cytometry were performed to measure celastrol’s cytotoxicity and whether the cell death was linked to ferroptosis.
Results
Celastrol treatment increased lipid oxidation and decreased expression of anti-ferroptosis proteins in IR-HepG2 cells. Celastrol downregulated glutathione peroxidase 4 (GPX4) mRNA. Molecular docking models predicted that solute carrier family 7 member 11 (SLC7A11) and GPX4 were covalently bound by celastrol. Importantly, we found for the first time that the application of ferroptosis inhibitors (especially NAC) was able to reduce celastrol’s toxicity while preserving its ability to improve insulin sensitivity in IR-HepG2 cells.
Conclusion
One potential mechanism of celastrol’s cytotoxicity is the induction of ferroptosis, which can be alleviated by treatment with ferroptosis inhibitors. These findings provide a new strategy to block celastrol’s toxicity while preserving its therapeutic effects.
Please cite this article as: Liu JJ, Zhang X, Qi MM, Chi YB, Cai BL, Peng B, Zhang DH. Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells. J Integr Med. 2024; 22(3): 286–294.
期刊介绍:
The predecessor of JIM is the Journal of Chinese Integrative Medicine (Zhong Xi Yi Jie He Xue Bao). With this new, English-language publication, we are committed to make JIM an international platform for publishing high-quality papers on complementary and alternative medicine (CAM) and an open forum in which the different professions and international scholarly communities can exchange views, share research and their clinical experience, discuss CAM education, and confer about issues and problems in our various disciplines and in CAM as a whole in order to promote integrative medicine.
JIM is indexed/abstracted in: MEDLINE/PubMed, ScienceDirect, Emerging Sources Citation Index (ESCI), Scopus, Embase, Chemical Abstracts (CA), CAB Abstracts, EBSCO, WPRIM, JST China, Chinese Science Citation Database (CSCD), and China National Knowledge Infrastructure (CNKI).
JIM Editorial Office uses ThomsonReuters ScholarOne Manuscripts as submitting and review system (submission link: http://mc03.manuscriptcentral.com/jcim-en).
JIM is published bimonthly. Manuscripts submitted to JIM should be written in English. Article types include but are not limited to randomized controlled and pragmatic trials, translational and patient-centered effectiveness outcome studies, case series and reports, clinical trial protocols, preclinical and basic science studies, systematic reviews and meta-analyses, papers on methodology and CAM history or education, conference proceedings, editorials, commentaries, short communications, book reviews, and letters to the editor.
Our purpose is to publish a prestigious international journal for studies in integrative medicine. To achieve this aim, we seek to publish high-quality papers on any aspects of integrative medicine, such as acupuncture and traditional Chinese medicine, Ayurveda medicine, herbal medicine, homeopathy, nutrition, chiropractic, mind-body medicine, taichi, qigong, meditation, and any other modalities of CAM; our commitment to international scope ensures that research and progress from all regions of the world are widely covered. These ensure that articles published in JIM have the maximum exposure to the international scholarly community.
JIM can help its authors let their papers reach the widest possible range of readers, and let all those who share an interest in their research field be concerned with their study.