Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-03-25 DOI:10.1002/tpg2.20446
Ruiqi Wang, Meixuan Wu, Xiao Zhang, Tingbo Jiang, Zhigang Wei
{"title":"Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar.","authors":"Ruiqi Wang, Meixuan Wu, Xiao Zhang, Tingbo Jiang, Zhigang Wei","doi":"10.1002/tpg2.20446","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20446"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微RNA基因的甲基化及其对杨树茎次生木质部发育的影响
微小核糖核酸(miRNA)和 DNA 甲基化都是基因表达的重要调节因子。DNA 甲基化可以像编码基因一样,通过甲基化 miRNA 基因区的 CpG 岛来影响 miRNA 的转录。尽管之前的研究表明,DNA甲基化和miRNA都可能参与木材的形成过程,但在植物木材形成过程中,对两者之间关系的研究相对较少。研究表明,3 个月大的杨树的第二个节间(IN2)(从上到下)可代表杨树茎干发育的初级阶段,而 IN8 可代表次级阶段。PS和SS的DNA甲基化模式和miRNA表达模式也存在显著差异。在本研究中,我们首先对甲基化和miRNA测序数据进行了交互分析,从初级阶段和次级阶段中发现了43个受不同甲基化调控的差异表达miRNA,通过富集分析发现这些miRNA参与了与木材形成相关的多个生物学过程。此外,通过降解组测序和功能分析,最终确定了 6 个 miRNA/目标基因模块可能参与了杨树茎的次生木质部发育。总之,这项研究为木材形成过程中不同调控途径之间的相互作用机制提供了重要的参考信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
期刊最新文献
Soybean genomics research community strategic plan: A vision for 2024-2028. Enhancing prediction accuracy of grain yield in wheat lines adapted to the southeastern United States through multivariate and multi-environment genomic prediction models incorporating spectral and thermal information. Genome-wide association of an organic naked barley diversity panel identified quantitative trait loci for disease resistance. Association mapping and genomic prediction for processing and end-use quality traits in wheat (Triticum aestivum L.). Characterization of a new barley greenbug resistance gene Rsg4 in the Chinese landrace CI 2458.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1