{"title":"Development of a novel seized drug screening method utilizing DART-MS and used weigh paper","authors":"Alleigh N. Couch, J. Tyler Davidson","doi":"10.1016/j.forc.2024.100572","DOIUrl":null,"url":null,"abstract":"<div><p>The conventional analytical scheme for seized drug analysis utilizes quick and cost-effective presumptive testing, such as color tests, followed by more discriminatory techniques, such as gas chromatography-mass spectrometry (GC–MS). Before the seized drug evidence is analyzed, the evidence is weighed using an appropriate weighing matrix and balance. Typically, the weighing matrix is discarded as chemical waste; however, the process of weighing the evidence leads to the deposition of drug residue onto the weighing matrix, which is then amenable to rapid analysis using ambient ionization approaches, such as direct analysis in real time mass spectrometry (DART-MS). This study demonstrates a DART-MS method for the rapid screening of seized drug evidence using filter paper and glassine paper weighing matrices commonly found in forensic laboratories. Validation experiments were performed using filter paper and glassine paper and compared to the results obtained using glass capillaries to assess the effectiveness of each weighing matrix. A total of 40 authentic samples, 20 filter papers and 20 glassine papers, were analyzed and the resulting spectra were searched using the National Institute of Standards and Technology (NIST) DART-MS Forensics Database and Data Interpretation Tool (DIT). When compared to the ground truth GC–MS results, the developed approach had a 90% correct identification rate, with all misidentifications being due to the presence of tablets rather than powder. The developed DART-MS screening method provides the seized drug community with a method to rapidly screen seized drug residue remaining from the weighing process and to improve the overall laboratory efficiency.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"39 ","pages":"Article 100572"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170924000249","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional analytical scheme for seized drug analysis utilizes quick and cost-effective presumptive testing, such as color tests, followed by more discriminatory techniques, such as gas chromatography-mass spectrometry (GC–MS). Before the seized drug evidence is analyzed, the evidence is weighed using an appropriate weighing matrix and balance. Typically, the weighing matrix is discarded as chemical waste; however, the process of weighing the evidence leads to the deposition of drug residue onto the weighing matrix, which is then amenable to rapid analysis using ambient ionization approaches, such as direct analysis in real time mass spectrometry (DART-MS). This study demonstrates a DART-MS method for the rapid screening of seized drug evidence using filter paper and glassine paper weighing matrices commonly found in forensic laboratories. Validation experiments were performed using filter paper and glassine paper and compared to the results obtained using glass capillaries to assess the effectiveness of each weighing matrix. A total of 40 authentic samples, 20 filter papers and 20 glassine papers, were analyzed and the resulting spectra were searched using the National Institute of Standards and Technology (NIST) DART-MS Forensics Database and Data Interpretation Tool (DIT). When compared to the ground truth GC–MS results, the developed approach had a 90% correct identification rate, with all misidentifications being due to the presence of tablets rather than powder. The developed DART-MS screening method provides the seized drug community with a method to rapidly screen seized drug residue remaining from the weighing process and to improve the overall laboratory efficiency.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.