Automated generation of OPC UA information models — A review and outlook

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-03-21 DOI:10.1016/j.jii.2024.100602
Axel Busboom
{"title":"Automated generation of OPC UA information models — A review and outlook","authors":"Axel Busboom","doi":"10.1016/j.jii.2024.100602","DOIUrl":null,"url":null,"abstract":"<div><p>OPC Unified Architecture (OPC UA) is widely considered a key enabler of “Industry 4.0” and one of the most promising standardized platforms for industrial communications from sensor to cloud. One of its key features is a powerful framework for information modeling that allows to compose semantic models and enables self-describing information provisioning. However, building OPC UA information models can be a tedious task, requiring deep understanding of both the OPC UA meta-model and the application domain to be modeled. Therefore, a wide range of methods for automatically generating OPC UA information models has been described in the literature, either from relational databases, from application-domain specific models, tools, or languages, or by aggregating multiple component-level models into a single, system-level information model. This paper reviews the state-of-the-art in tools and methods for automated generation of OPC UA information models. It is argued that enriching the tool landscape and interoperability, in particular with industrial engineering tools, will be a prerequisite for unleashing the full potential of OPC UA.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"39 ","pages":"Article 100602"},"PeriodicalIF":10.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452414X24000463/pdfft?md5=13158c7a392c49ac48699a6a35344376&pid=1-s2.0-S2452414X24000463-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24000463","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

OPC Unified Architecture (OPC UA) is widely considered a key enabler of “Industry 4.0” and one of the most promising standardized platforms for industrial communications from sensor to cloud. One of its key features is a powerful framework for information modeling that allows to compose semantic models and enables self-describing information provisioning. However, building OPC UA information models can be a tedious task, requiring deep understanding of both the OPC UA meta-model and the application domain to be modeled. Therefore, a wide range of methods for automatically generating OPC UA information models has been described in the literature, either from relational databases, from application-domain specific models, tools, or languages, or by aggregating multiple component-level models into a single, system-level information model. This paper reviews the state-of-the-art in tools and methods for automated generation of OPC UA information models. It is argued that enriching the tool landscape and interoperability, in particular with industrial engineering tools, will be a prerequisite for unleashing the full potential of OPC UA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动生成 OPC UA 信息模型--回顾与展望
OPC 统一架构(OPC UA)被广泛认为是 "工业 4.0 "的关键推动因素,也是从传感器到云的工业通信中最有前途的标准化平台之一。它的主要特点之一是强大的信息建模框架,允许组成语义模型并实现自描述信息提供。然而,建立 OPC UA 信息模型可能是一项繁琐的任务,需要深入了解 OPC UA 元模型和要建模的应用领域。因此,文献中描述了大量自动生成 OPC UA 信息模型的方法,这些方法有的来自关系数据库,有的来自特定应用领域的模型、工具或语言,有的则通过将多个组件级模型聚合到一个单一的系统级信息模型中。本文回顾了自动生成 OPC UA 信息模型的工具和方法的最新进展。本文认为,丰富工具种类和互操作性,特别是与工业工程工具的互操作性,将是释放 OPC UA 全部潜力的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management TRIPLE: A blockchain-based digital twin framework for cyber–physical systems security Industrial information integration in deep space exploration and exploitation: Architecture and technology Interoperability levels and challenges of digital twins in cyber–physical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1