U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang, Bengt Ake Sunden
{"title":"An impact of ternary nanofluid on a micropolar fluid with inclined MHD, slip flow and heat transfer","authors":"U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang, Bengt Ake Sunden","doi":"10.1108/hff-07-2023-0384","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"19 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-07-2023-0384","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.
Design/methodology/approach
The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.
Findings
The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.
Originality/value
The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf