Dr. Xinhui Zhao, Cheng Kuang, Hongshu Liu, Chaopeng An, Prof. Mingyan Wang, Prof. Tiancheng Mu
{"title":"Spent Lithium-Ion Batteries Derived Co3O4 for Electrocatalytic Polyethylene Terephthalate Plastic Recycling","authors":"Dr. Xinhui Zhao, Cheng Kuang, Hongshu Liu, Chaopeng An, Prof. Mingyan Wang, Prof. Tiancheng Mu","doi":"10.1002/cssc.202400105","DOIUrl":null,"url":null,"abstract":"<p>Spent lithium-ion batteries (LIBs) are an essential secondary resource containing valuable metal elements. Transforming spent LIBs into efficient catalysts through a simple process presents a promising strategy to address both metal resource scarcity and clean energy challenges. Herein, a deep eutectic solvent-assisted synthesis of Co<sub>3</sub>O<sub>4</sub> material from spent LIBs is proposed. The obtained Co<sub>3</sub>O<sub>4</sub> material possesses efficient and stable electrocatalytic activity for converting raw polyethylene terephthalate (PET) bottles into high-purity formic acid and terephthalic acid products under ambient conditions. As expected, the Co<sub>3</sub>O<sub>4</sub> catalyst exhibits a high FE of 92 % with a concentration of produced potassium formate of 23.6 mM under alkaline conditions. This study presents a waste-treating-waste strategy for the simultaneous recovery of spent LIBs and PET waste in a greener manner.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202400105","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spent lithium-ion batteries (LIBs) are an essential secondary resource containing valuable metal elements. Transforming spent LIBs into efficient catalysts through a simple process presents a promising strategy to address both metal resource scarcity and clean energy challenges. Herein, a deep eutectic solvent-assisted synthesis of Co3O4 material from spent LIBs is proposed. The obtained Co3O4 material possesses efficient and stable electrocatalytic activity for converting raw polyethylene terephthalate (PET) bottles into high-purity formic acid and terephthalic acid products under ambient conditions. As expected, the Co3O4 catalyst exhibits a high FE of 92 % with a concentration of produced potassium formate of 23.6 mM under alkaline conditions. This study presents a waste-treating-waste strategy for the simultaneous recovery of spent LIBs and PET waste in a greener manner.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology