Neofunctionalization of an OMT cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-04-02 Epub Date: 2024-03-26 DOI:10.1073/pnas.2321615121
Zhaoxin Peng, Lizhi Song, Minghua Chen, Zeyang Liu, Ziyu Yuan, Huan Wen, Haipeng Zhang, Yue Huang, Zhaowen Peng, Hongbin Yang, Gu Li, Huixian Zhang, Zhehui Hu, Wenyun Li, Xia Wang, Robert M Larkin, Xiuxin Deng, Qiang Xu, Jiajing Chen, Juan Xu
{"title":"Neofunctionalization of an <i>OMT</i> cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus.","authors":"Zhaoxin Peng, Lizhi Song, Minghua Chen, Zeyang Liu, Ziyu Yuan, Huan Wen, Haipeng Zhang, Yue Huang, Zhaowen Peng, Hongbin Yang, Gu Li, Huixian Zhang, Zhehui Hu, Wenyun Li, Xia Wang, Robert M Larkin, Xiuxin Deng, Qiang Xu, Jiajing Chen, Juan Xu","doi":"10.1073/pnas.2321615121","DOIUrl":null,"url":null,"abstract":"<p><p>Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and <i>O</i>-methyltransferases (OMTs). However, the specific <i>OMTs</i> that catalyze the systematic <i>O</i>-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, <i>CreOMT3</i>, <i>CreOMT4</i>, and <i>CreOMT5</i>, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite <i>O</i>-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem <i>CreOMT3</i>, <i>CreOMT4</i>, and <i>CreOMT5</i> may be duplicated from <i>CreOMT6</i> and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-<i>O</i>-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the <i>CreOMT4</i> promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 14","pages":"e2321615121"},"PeriodicalIF":9.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2321615121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个 OMT 簇的新功能化主导着与柑橘驯化相关的多甲氧基黄酮生物合成。
多甲氧基黄酮(PMFs)是一类丰富的特殊代谢物,在柑橘中具有显著的抗癌特性。多甲氧基黄酮中的多个甲氧基来自一系列羟化酶和 O-甲基转移酶(OMT)催化的甲基化修饰。然而,催化羟基黄酮系统性 O-甲基化的特定 OMTs 在很大程度上仍不为人知。在这里,我们报告了 PMFs 在野生柑橘和柑橘衍生品种中的高度积累,而在早期分化的柑橘物种和相关物种中则检测不到。我们的研究结果表明,三个同源基因 CreOMT3、CreOMT4 和 CreOMT5 对柑橘中 PMF 的生物合成至关重要,它们编码的甲基转移酶对羟基黄酮具有多位点 O-甲基化活性,在体外和体内产生七种 PMF。基因组和同源比较分析表明,串联的CreOMT3、CreOMT4和CreOMT5可能是从CreOMT6复制而来,并通过新功能化形成了柑橘类PMF生物合成的遗传基础。我们还证明了CreOMT4中的N17是C3-、C5-、C6-和C3'-O-甲基化活性的一个必需氨基酸残基,并为早期分化的柑橘和一些驯化的柑橘物种缺乏OMT6产生PMF的功能提供了理论依据。在大多数现代栽培柑橘中发现的 CreOMT4 启动子中 1,041-bp 的缺失降低了野生柑橘和早期混合柑橘中 PMF 的含量。这项研究为重建 PMF 的生物合成途径提供了一个框架,这可能有助于培育对健康更有益的柑橘类水果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Nestor et al., Future scientific innovation requires the transformative power of philanthropy. Correction for Cao et al., Circadian clock cryptochrome proteins regulate autoimmunity. Correction for He et al., Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex. Correction for Humbert et al., Functional SARS-CoV-2 cross-reactive CD4+ T cells established in early childhood decline with age. Correction for Wu et al., NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1