The origins of gas exchange and ion regulation in fish gills: evidence from structure and function.

IF 1.7 3区 生物学 Q4 PHYSIOLOGY Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology Pub Date : 2024-10-01 Epub Date: 2024-03-26 DOI:10.1007/s00360-024-01545-5
Michael A Sackville, J Andrew Gillis, Colin J Brauner
{"title":"The origins of gas exchange and ion regulation in fish gills: evidence from structure and function.","authors":"Michael A Sackville, J Andrew Gillis, Colin J Brauner","doi":"10.1007/s00360-024-01545-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gill function in gas exchange and ion regulation has played key roles in the evolution of fishes. In this review, we summarize data from the fields of palaeontology, developmental biology and comparative physiology for when and how the gills first acquired these functions. Data from across disciplines strongly supports a stem vertebrate origin for gas exchange structures and function at the gills with the emergence of larger, more active fishes. However, the recent discovery of putative ionocytes in extant cephalochordates and hemichordates suggests that ion regulation at gills might have originated much earlier than gas exchange, perhaps in the ciliated pharyngeal arches in the last common ancestor of deuterostomes. We hypothesize that the ancestral form of ion regulation served a filter-feeding function in the ciliated pharyngeal arches, and was later coopted in vertebrates to regulate extracellular ion and acid-base balance. We propose that future research should explore ionocyte homology and function across extant deuterostomes to test this hypothesis and others in order to determine the ancestral origins of ion regulation in fish gills.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"557-568"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-024-01545-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gill function in gas exchange and ion regulation has played key roles in the evolution of fishes. In this review, we summarize data from the fields of palaeontology, developmental biology and comparative physiology for when and how the gills first acquired these functions. Data from across disciplines strongly supports a stem vertebrate origin for gas exchange structures and function at the gills with the emergence of larger, more active fishes. However, the recent discovery of putative ionocytes in extant cephalochordates and hemichordates suggests that ion regulation at gills might have originated much earlier than gas exchange, perhaps in the ciliated pharyngeal arches in the last common ancestor of deuterostomes. We hypothesize that the ancestral form of ion regulation served a filter-feeding function in the ciliated pharyngeal arches, and was later coopted in vertebrates to regulate extracellular ion and acid-base balance. We propose that future research should explore ionocyte homology and function across extant deuterostomes to test this hypothesis and others in order to determine the ancestral origins of ion regulation in fish gills.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鱼鳃中气体交换和离子调节的起源:来自结构和功能的证据。
鱼鳃在气体交换和离子调节方面的功能在鱼类进化过程中发挥了关键作用。在这篇综述中,我们总结了来自古生物学、发育生物学和比较生理学领域的数据,说明鳃何时以及如何首次获得这些功能。各学科的数据有力地证明,随着体型更大、更活跃的鱼类的出现,鳃的气体交换结构和功能起源于脊椎动物。然而,最近在现生头索类和半脊类动物中发现的假定离子细胞表明,鳃的离子调节功能可能起源于比气体交换更早的时期,也许是在去脊椎动物最后共同祖先的纤毛咽弓中。我们推测,离子调节的祖先形式在纤毛咽弓中起到了过滤进食的作用,后来在脊椎动物中被用于调节细胞外离子和酸碱平衡。我们建议今后的研究应探索现生中古脊椎动物的离子细胞同源性和功能,以验证这一假设和其他假设,从而确定鱼鳃离子调节的祖先起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
期刊最新文献
Oxidative stress across multiple tissues in house sparrows (Passer domesticus) acclimated to warm, stable cold, and unpredictable cold thermal treatments. Metabolic rate and saliva cortisol concentrations in socially housed adolescent guinea pigs. Metabolic effects of physical exercise on zebrafish (Danio rerio) fed a high-fat diet. Effects of in ovo supplementation of selenium (Se) and zinc (zn) on hatchability and production performance of broiler chickens. Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1