Continual Mean Estimation Under User-Level Privacy

Anand Jerry George;Lekshmi Ramesh;Aditya Vikram Singh;Himanshu Tyagi
{"title":"Continual Mean Estimation Under User-Level Privacy","authors":"Anand Jerry George;Lekshmi Ramesh;Aditya Vikram Singh;Himanshu Tyagi","doi":"10.1109/JSAIT.2024.3366086","DOIUrl":null,"url":null,"abstract":"We consider the problem of continually releasing an estimate of the population mean of a stream of samples that is user-level differentially private (DP). At each time instant, a user contributes a sample, and the users can arrive in arbitrary order. Until now these requirements of continual release and user-level privacy were considered in isolation. But, in practice, both these requirements come together as the users often contribute data repeatedly and multiple queries are made. We provide an algorithm that outputs a mean estimate at every time instant t such that the overall release is user-level \n<inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>\n-DP and has the following error guarantee: Denoting by \n<inline-formula> <tex-math>$m_{t}$ </tex-math></inline-formula>\n the maximum number of samples contributed by a user, as long as \n<inline-formula> <tex-math>$\\tilde {\\Omega }(1/\\varepsilon)$ </tex-math></inline-formula>\n users have \n<inline-formula> <tex-math>$m_{t}/2$ </tex-math></inline-formula>\n samples each, the error at time t is \n<inline-formula> <tex-math>$\\tilde {O}(1/\\sqrt {t}+\\sqrt {m}_{t}/t\\varepsilon)$ </tex-math></inline-formula>\n. This is a universal error guarantee which is valid for all arrival patterns of the users. Furthermore, it (almost) matches the existing lower bounds for the single-release setting at all time instants when users have contributed equal number of samples.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"28-43"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10443583/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of continually releasing an estimate of the population mean of a stream of samples that is user-level differentially private (DP). At each time instant, a user contributes a sample, and the users can arrive in arbitrary order. Until now these requirements of continual release and user-level privacy were considered in isolation. But, in practice, both these requirements come together as the users often contribute data repeatedly and multiple queries are made. We provide an algorithm that outputs a mean estimate at every time instant t such that the overall release is user-level $\varepsilon $ -DP and has the following error guarantee: Denoting by $m_{t}$ the maximum number of samples contributed by a user, as long as $\tilde {\Omega }(1/\varepsilon)$ users have $m_{t}/2$ samples each, the error at time t is $\tilde {O}(1/\sqrt {t}+\sqrt {m}_{t}/t\varepsilon)$ . This is a universal error guarantee which is valid for all arrival patterns of the users. Furthermore, it (almost) matches the existing lower bounds for the single-release setting at all time instants when users have contributed equal number of samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用户级隐私下的连续平均值估计
我们考虑的问题是,如何持续发布用户级差异保密(DP)样本流的总体均值估计值。在每个时间瞬间,用户都会贡献一个样本,而且用户可以以任意顺序到达。到目前为止,人们一直在孤立地考虑持续发布和用户级隐私的要求。但在实践中,由于用户经常重复提供数据并进行多次查询,这两个要求会同时出现。我们提供了一种算法,它能在每个时间瞬间 t 输出一个平均估计值,从而使整体发布达到用户级 $\varepsilon $ -DP,并具有以下误差保证:用 $m_{t}$ 表示用户贡献的最大样本数,只要 $\tilde {\Omega }(1/\varepsilon)$ 用户每人有 $m_{t}/2$ 样本,时间 t 的误差就是 $\tilde {O}(1/\sqrt {t}+\sqrt {m}_{t}/t\varepsilon)$ 。这是一个通用误差保证,对所有用户的到达模式都有效。此外,当用户贡献的样本数量相等时,它(几乎)与现有的单次发布设置在所有时间时刻的下限相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1