S. Abed, H. Djaaboube, R. Aouati, A. Bouaballou, K. Bouchouit, A. Andrushchak, R. Wielgosz, S. Taboukhat, B. Sahraoui
{"title":"Control of NLO and photocatalysis properties based on the use of Sn-doped ZnO thin films for optoelectronics applications","authors":"S. Abed, H. Djaaboube, R. Aouati, A. Bouaballou, K. Bouchouit, A. Andrushchak, R. Wielgosz, S. Taboukhat, B. Sahraoui","doi":"10.1142/s0217984924503159","DOIUrl":null,"url":null,"abstract":"<p>Thin films of zinc oxide (ZnO) have unique properties that make them suitable for various applications. In this study, we used a spray pyrolysis process to develop undoped ZnO and ZnO doped with Sn thin films on a glass substrate. We aimed to investigate the effect of Sn concentration on the optical, nonlinear optical, and structural properties of ZnO:Sn thin films. X-ray diffraction analysis revealed that all the deposited ZnO thin films exhibit polycrystalline hexagonal structures well-oriented along the <i>c</i>-axis. The obtained films were transparent in the visible range, with a transmittance between 70% and 80%. The optical energy bandgap values for the films varied from 3.16 eV to 3.29 eV. We also determined the second- and third-order nonlinear susceptibilities, which decreased with increasing Sn concentration. We investigated the photocatalytic activity of the ZnO-doped Sn thin films using methylene blue dye under visible light. Sn doping enhanced the photocatalytic activity of ZnO thin films, with constant rate values of 0.00046 and 0.00074 min<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span><span></span> for ZnO and ZnO:Sn thin films, respectively.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503159","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Thin films of zinc oxide (ZnO) have unique properties that make them suitable for various applications. In this study, we used a spray pyrolysis process to develop undoped ZnO and ZnO doped with Sn thin films on a glass substrate. We aimed to investigate the effect of Sn concentration on the optical, nonlinear optical, and structural properties of ZnO:Sn thin films. X-ray diffraction analysis revealed that all the deposited ZnO thin films exhibit polycrystalline hexagonal structures well-oriented along the c-axis. The obtained films were transparent in the visible range, with a transmittance between 70% and 80%. The optical energy bandgap values for the films varied from 3.16 eV to 3.29 eV. We also determined the second- and third-order nonlinear susceptibilities, which decreased with increasing Sn concentration. We investigated the photocatalytic activity of the ZnO-doped Sn thin films using methylene blue dye under visible light. Sn doping enhanced the photocatalytic activity of ZnO thin films, with constant rate values of 0.00046 and 0.00074 min for ZnO and ZnO:Sn thin films, respectively.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.