Zachary Steever, Kyle Hunt, Mark Karwan, Junsong Yuan, Chase C. Murray
{"title":"A Graph-Based Approach for Relating Integer Programs","authors":"Zachary Steever, Kyle Hunt, Mark Karwan, Junsong Yuan, Chase C. Murray","doi":"10.1287/ijoc.2023.0255","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a framework for classifying and comparing instances of integer linear programs (ILPs) based on their mathematical structure. It has long been observed that the structure of ILPs can play an important role in determining the effectiveness of certain solution techniques; those that work well for one class of ILPs are often found to be effective in solving similarly structured problems. In this work, the structure of a given ILP instance is captured via a graph-based representation, where decision variables and constraints are described by nodes, and edges denote the presence of decision variables in certain constraints. Using machine learning techniques for graph-structured data, we introduce two approaches for leveraging the graph representations for relating ILPs. In the first approach, a graph convolutional network (GCN) is used to classify ILP graphs as having come from one of a known number of problem classes. The second approach makes use of latent features learned by the GCN to compare ILP graphs to one another directly. As part of the latter approach, we introduce a formal measure of graph-based structural similarity. A series of empirical studies indicate strong performance for both the classification and comparison procedures. Additional properties of ILP graphs, namely, losslessness and permutation invariance, are also explored via computational experiments.</p><p><b>History:</b> Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis.</p><p><b>Supplemental Material:</b> The software that supports the findings of this study is available within the paper and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0255) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2023.0255). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/.</p>","PeriodicalId":13620,"journal":{"name":"Informs Journal on Computing","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informs Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1287/ijoc.2023.0255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a framework for classifying and comparing instances of integer linear programs (ILPs) based on their mathematical structure. It has long been observed that the structure of ILPs can play an important role in determining the effectiveness of certain solution techniques; those that work well for one class of ILPs are often found to be effective in solving similarly structured problems. In this work, the structure of a given ILP instance is captured via a graph-based representation, where decision variables and constraints are described by nodes, and edges denote the presence of decision variables in certain constraints. Using machine learning techniques for graph-structured data, we introduce two approaches for leveraging the graph representations for relating ILPs. In the first approach, a graph convolutional network (GCN) is used to classify ILP graphs as having come from one of a known number of problem classes. The second approach makes use of latent features learned by the GCN to compare ILP graphs to one another directly. As part of the latter approach, we introduce a formal measure of graph-based structural similarity. A series of empirical studies indicate strong performance for both the classification and comparison procedures. Additional properties of ILP graphs, namely, losslessness and permutation invariance, are also explored via computational experiments.
History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis.
Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0255) as well as from the IJOC GitHub software repository (https://github.com/INFORMSJoC/2023.0255). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/.
期刊介绍:
The INFORMS Journal on Computing (JOC) is a quarterly that publishes papers in the intersection of operations research (OR) and computer science (CS). Most papers contain original research, but we also welcome special papers in a variety of forms, including Feature Articles on timely topics, Expository Reviews making a comprehensive survey and evaluation of a subject area, and State-of-the-Art Reviews that collect and integrate recent streams of research.