Galaxy spin direction asymmetry in JWST deep fields

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-03-25 DOI:10.1017/pasa.2024.20
Lior Shamir
{"title":"Galaxy spin direction asymmetry in JWST deep fields","authors":"Lior Shamir","doi":"10.1017/pasa.2024.20","DOIUrl":null,"url":null,"abstract":"The unprecedented imaging power of JWST provides new abilities to observe the shapes of objects in the early Universe in a way that has not been possible before. Recently, JWST acquired a deep field image inside the same field imaged in the past as the HST Ultra Deep Field. Computer-based quantitative analysis of spiral galaxies in that field shows that among 34 galaxies for which their rotation of direction can be determined by the shapes of the arms, 24 rotate clockwise, and just 10 rotate counterclockwise. The one-tailed binomial distribution probability to have asymmetry equal or stronger than the observed asymmetry by chance is ∼0.012. While the analysis is limited by the small size of the data, the observed asymmetry is aligned with all relevant previous large-scale analyses from all premier digital sky surveys, all show a higher number of galaxies rotating clockwise in that part of the sky, and the magnitude of the asymmetry increases as the redshift gets higher. This paper also provides data and analysis to reproduce previous experiments suggesting that the distribution of galaxy rotation in the Universe is random, to show that the exact same data used in these studies in fact show non-random distribution, and in excellent agreement with the results shown here. These findings reinforce consideration of the possibility that the directions of rotation of spiral galaxies as observed from Earth are not necessarily randomly distributed. The explanation can be related to the large-scale structure of the Universe, but can also be related to a possible anomaly in the physics of galaxy rotation.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.20","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The unprecedented imaging power of JWST provides new abilities to observe the shapes of objects in the early Universe in a way that has not been possible before. Recently, JWST acquired a deep field image inside the same field imaged in the past as the HST Ultra Deep Field. Computer-based quantitative analysis of spiral galaxies in that field shows that among 34 galaxies for which their rotation of direction can be determined by the shapes of the arms, 24 rotate clockwise, and just 10 rotate counterclockwise. The one-tailed binomial distribution probability to have asymmetry equal or stronger than the observed asymmetry by chance is ∼0.012. While the analysis is limited by the small size of the data, the observed asymmetry is aligned with all relevant previous large-scale analyses from all premier digital sky surveys, all show a higher number of galaxies rotating clockwise in that part of the sky, and the magnitude of the asymmetry increases as the redshift gets higher. This paper also provides data and analysis to reproduce previous experiments suggesting that the distribution of galaxy rotation in the Universe is random, to show that the exact same data used in these studies in fact show non-random distribution, and in excellent agreement with the results shown here. These findings reinforce consideration of the possibility that the directions of rotation of spiral galaxies as observed from Earth are not necessarily randomly distributed. The explanation can be related to the large-scale structure of the Universe, but can also be related to a possible anomaly in the physics of galaxy rotation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JWST 深场中的星系自旋方向不对称性
JWST 史无前例的成像能力为观测早期宇宙天体的形状提供了前所未有的新能力。最近,JWST 在过去曾成像过的 HST 超深场内获得了一张深场图像。对该场中的螺旋星系进行的计算机定量分析显示,在 34 个可以通过旋臂形状确定旋转方向的星系中,有 24 个顺时针旋转,只有 10 个逆时针旋转。在单尾二项分布中,不对称等于或强于观测到的不对称的概率为0.012。虽然分析受到数据量较小的限制,但观测到的不对称现象与之前所有主要数字巡天的大规模分析结果一致,都显示该部分天空中顺时针旋转的星系数量较多,而且不对称的幅度随着红移的增大而增大。本文还提供了数据和分析,重现了之前认为宇宙中星系旋转分布是随机的实验,结果表明这些研究中使用的完全相同的数据实际上显示出非随机分布,而且与本文显示的结果非常一致。这些发现加强了人们对从地球上观测到的螺旋星系旋转方向不一定是随机分布的可能性的思考。这种解释可能与宇宙的大尺度结构有关,也可能与星系旋转物理学中可能存在的异常现象有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Toll-like receptor agonists as cancer vaccine adjuvants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1