{"title":"Case study on the secondary support time and optimization of combined support for a roadway under high in-situ stress","authors":"","doi":"10.1007/s40948-024-00774-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Roadway support can effectively improve the stability of roadway excavation and ensure the safety of underground mining. This study investigates the secondary support time and parameter optimization of combined support for a deep roadway in the stage of resource replacement in the Huize lead–zinc mine in Yunnan Province, China. The aim of this study is to increase the stability and safety of the roadway and decrease the cost of support. Research on support methods and failure modes has shown that under the action of high in-situ stress in deep mining, the surrounding rock of the roadway exhibits obvious rheological phenomena. The change in the radial displacement of the roadway is combined with creep tests of the main exposed surrounding rock to determine the secondary support time. Numerical simulations and orthogonal tests are utilized to optimize the support parameters in terms of the roof subsidence, floor heave displacement, side displacement, and plastic zone by analyzing the effects of the sprayed concrete thickness, bolt length, bolt row spacing, and bolt diameter on the support results. The proposed secondary support time and combined parameters can provide a reference for roadway support in similar strata.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"11 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00774-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Roadway support can effectively improve the stability of roadway excavation and ensure the safety of underground mining. This study investigates the secondary support time and parameter optimization of combined support for a deep roadway in the stage of resource replacement in the Huize lead–zinc mine in Yunnan Province, China. The aim of this study is to increase the stability and safety of the roadway and decrease the cost of support. Research on support methods and failure modes has shown that under the action of high in-situ stress in deep mining, the surrounding rock of the roadway exhibits obvious rheological phenomena. The change in the radial displacement of the roadway is combined with creep tests of the main exposed surrounding rock to determine the secondary support time. Numerical simulations and orthogonal tests are utilized to optimize the support parameters in terms of the roof subsidence, floor heave displacement, side displacement, and plastic zone by analyzing the effects of the sprayed concrete thickness, bolt length, bolt row spacing, and bolt diameter on the support results. The proposed secondary support time and combined parameters can provide a reference for roadway support in similar strata.
期刊介绍:
This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.