Tatiana Fernanda Canata, Marcelo Rodrigues Barbosa Júnior, Romário Porto de Oliveira, Carlos Eduardo Angeli Furlani, Rouverson Pereira da Silva
{"title":"AI-Driven Prediction of Sugarcane Quality Attributes Using Satellite Imagery","authors":"Tatiana Fernanda Canata, Marcelo Rodrigues Barbosa Júnior, Romário Porto de Oliveira, Carlos Eduardo Angeli Furlani, Rouverson Pereira da Silva","doi":"10.1007/s12355-024-01399-9","DOIUrl":null,"url":null,"abstract":"<div><p>Anticipating the sugar content of sugarcane crop is a crucial aspect that holds the key to develop innovative data-driven solutions for determining the ideal time of mechanized harvest. However, traditional laboratory-based approaches are laborious, time-consuming, and limited in their scalability. Thus, we explored the potential of integrating multispectral data and cutting-edge artificial intelligence algorithms to predict the sugar content attributes of sugarcane, namely Brix and Purity. The sugarcane quality attributes were measured in a routine laboratory using 510 georeferenced samples from two commercial areas. Crop canopy reflectance values and growing degree days (GDD) were used as inputs on developing predictive models. Two artificial intelligence (AI) algorithms, artificial neural network (ANN) and random forest (RF), and multiple linear regression (MLR) were performed to create the predictive models for mapping the sugarcane quality. The models’ performance proved that RF regression was better for °Brix prediction. In contrast, Purity values were better predicted by ANN algorithm. GDD was the most important variable on performance of RF modeling for both outputs, followed by Green spectral band from satellite imagery. Timely results were achieved integrating satellite imagery and AI-based model on prediction of qualitative attributes for sugarcane. It can provide useful data layers to support site-specific management strategies within season by agroindustry and supporting the decision-making of harvesting in large scale.</p></div>","PeriodicalId":781,"journal":{"name":"Sugar Tech","volume":"26 3","pages":"741 - 751"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sugar Tech","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12355-024-01399-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Anticipating the sugar content of sugarcane crop is a crucial aspect that holds the key to develop innovative data-driven solutions for determining the ideal time of mechanized harvest. However, traditional laboratory-based approaches are laborious, time-consuming, and limited in their scalability. Thus, we explored the potential of integrating multispectral data and cutting-edge artificial intelligence algorithms to predict the sugar content attributes of sugarcane, namely Brix and Purity. The sugarcane quality attributes were measured in a routine laboratory using 510 georeferenced samples from two commercial areas. Crop canopy reflectance values and growing degree days (GDD) were used as inputs on developing predictive models. Two artificial intelligence (AI) algorithms, artificial neural network (ANN) and random forest (RF), and multiple linear regression (MLR) were performed to create the predictive models for mapping the sugarcane quality. The models’ performance proved that RF regression was better for °Brix prediction. In contrast, Purity values were better predicted by ANN algorithm. GDD was the most important variable on performance of RF modeling for both outputs, followed by Green spectral band from satellite imagery. Timely results were achieved integrating satellite imagery and AI-based model on prediction of qualitative attributes for sugarcane. It can provide useful data layers to support site-specific management strategies within season by agroindustry and supporting the decision-making of harvesting in large scale.
期刊介绍:
The journal Sugar Tech is planned with every aim and objectives to provide a high-profile and updated research publications, comments and reviews on the most innovative, original and rigorous development in agriculture technologies for better crop improvement and production of sugar crops (sugarcane, sugar beet, sweet sorghum, Stevia, palm sugar, etc), sugar processing, bioethanol production, bioenergy, value addition and by-products. Inter-disciplinary studies of fundamental problems on the subjects are also given high priority. Thus, in addition to its full length and short papers on original research, the journal also covers regular feature articles, reviews, comments, scientific correspondence, etc.