{"title":"Dynamical Analysis of a Quadratic Megastable Chaotic Oscillator and Its Application in Biometric Fingerprint Image Encryption","authors":"Rajeskannan Subramanian, Serdar Çiçek, Akif Akgul, Girma Adam, Anitha Karthikeyan, Karthikeyan Rajagopal","doi":"10.1155/2024/2005801","DOIUrl":null,"url":null,"abstract":"<p>This investigation centers on megastable systems, distinguished by their countable infinite attractors, with a particular emphasis on the Quadratic Megastable Oscillator (QMO). Unlike traditional megastable oscillators reliant on external excitation, our proposed QMO operates autonomously, contributing to its distinctiveness. Through a comprehensive exploration of the QMO, we elucidate various dynamical behaviors, enriching the understanding of its complex system dynamics. In contrast to conventional megastable oscillators, the QMO yields nested types of multiple attractors for diverse initial conditions, elegantly depicted in phase portraits. To gauge the sustainability of chaotic oscillation, we employ influential parameter bifurcation plots, providing a nuanced insight into the system’s dynamical evolution. The complexity of the proposed system is further underscored by its intricate basins of attraction, accommodating an infinite number of coexisting attractors. Exploring trajectory dynamics, we observe that certain initial conditions lead trajectories to distant destinations, evading the influence of local attractors. This behavior underscores the uniqueness of the QMO and highlights its potential applications in scenarios requiring nonlocalized attractor behaviors. Taking a practical turn, the QMO is applied to biometric fingerprint image encryption, demonstrating its efficacy in real-world applications. Rigorous statistical analyses and vulnerability assessments confirm the success of the QMO in providing secure encryption within chaotic system-based frameworks. This research contributes not only to the theoretical understanding of megastable systems but also establishes the QMO as a valuable tool in encryption applications, emphasizing its robustness and versatility in complex dynamical scenarios.</p>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2024 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2005801","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation centers on megastable systems, distinguished by their countable infinite attractors, with a particular emphasis on the Quadratic Megastable Oscillator (QMO). Unlike traditional megastable oscillators reliant on external excitation, our proposed QMO operates autonomously, contributing to its distinctiveness. Through a comprehensive exploration of the QMO, we elucidate various dynamical behaviors, enriching the understanding of its complex system dynamics. In contrast to conventional megastable oscillators, the QMO yields nested types of multiple attractors for diverse initial conditions, elegantly depicted in phase portraits. To gauge the sustainability of chaotic oscillation, we employ influential parameter bifurcation plots, providing a nuanced insight into the system’s dynamical evolution. The complexity of the proposed system is further underscored by its intricate basins of attraction, accommodating an infinite number of coexisting attractors. Exploring trajectory dynamics, we observe that certain initial conditions lead trajectories to distant destinations, evading the influence of local attractors. This behavior underscores the uniqueness of the QMO and highlights its potential applications in scenarios requiring nonlocalized attractor behaviors. Taking a practical turn, the QMO is applied to biometric fingerprint image encryption, demonstrating its efficacy in real-world applications. Rigorous statistical analyses and vulnerability assessments confirm the success of the QMO in providing secure encryption within chaotic system-based frameworks. This research contributes not only to the theoretical understanding of megastable systems but also establishes the QMO as a valuable tool in encryption applications, emphasizing its robustness and versatility in complex dynamical scenarios.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.