Novak Boskov, Xingyu Chen, Sevval Simsek, Ari Trachtenberg, David Starobinski
{"title":"Out-of-band transaction pool sync for large dynamic blockchain networks","authors":"Novak Boskov, Xingyu Chen, Sevval Simsek, Ari Trachtenberg, David Starobinski","doi":"10.1002/nem.2265","DOIUrl":null,"url":null,"abstract":"<p>Synchronization of transaction pools (<i>mempools</i>) has shown potential for improving the performance and block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed in the literature to incorporate early exchanges of <i>unconfirmed</i> transactions into the block propagation protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and independently) of the block propagation channel. In the process, we formalize the synchronization problem within a graph theoretic framework and introduce a novel algorithm (<i>SREP</i>—<i>set reconciliation-enhanced propagation</i>) with quantifiable guarantees. We analyze the algorithm's performance for various realistic network topologies and show that it converges on static connected graphs in a time bounded by the diameter of the graph. In graphs with dynamic edges, <i>SREP</i> converges in an expected time that is linear in the number of nodes. We confirm our analytical findings through extensive simulations that include comparisons with <i>MempoolSync</i>, a recent approach from the literature. Our simulations show that <i>SREP</i> incurs reasonable bandwidth overhead and scales gracefully with the size of the network (unlike <i>MempoolSync</i>).</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2265","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronization of transaction pools (mempools) has shown potential for improving the performance and block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed in the literature to incorporate early exchanges of unconfirmed transactions into the block propagation protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and independently) of the block propagation channel. In the process, we formalize the synchronization problem within a graph theoretic framework and introduce a novel algorithm (SREP—set reconciliation-enhanced propagation) with quantifiable guarantees. We analyze the algorithm's performance for various realistic network topologies and show that it converges on static connected graphs in a time bounded by the diameter of the graph. In graphs with dynamic edges, SREP converges in an expected time that is linear in the number of nodes. We confirm our analytical findings through extensive simulations that include comparisons with MempoolSync, a recent approach from the literature. Our simulations show that SREP incurs reasonable bandwidth overhead and scales gracefully with the size of the network (unlike MempoolSync).
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.