{"title":"Numerical Investigation by Applying Microballoon Actuators on High-Altitude Propeller","authors":"Zhengyu Qu, Ying Nie, Yanchu Yang","doi":"10.2514/1.c037492","DOIUrl":null,"url":null,"abstract":"<p>Microballoon actuators as a potential active flow control device have been studied for years. However, most studies have relied on experimental methods to investigate its effects. In this paper, we utilized the numerical method of steady-state RANS to explore the feasibility of applying microballoon actuators to suppress flow separation on a wing section and a high-altitude propeller. The geometric design, including shapes and positions for microballoons, is introduced, and these microballoons are fully resolved for the numerical models to better assess the influence of sensitive parameters. The turbulent model used in simulations is well validated in comparison with experimental data. In the wing section model, computational results show that at <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></math></span><span></span>, placing nonrotation microballoons close to the separation point can suppress separation bubbles and decrease drag by 12% before the stall angle of attack. In the propeller model, computational results show that placing a microballoon actuator array with a proper dimension and position on the blade can also effectively suppress the crossflow separation appearing at the trailing edge. At a rotational speed of 450 rpm, the efficiency enhancement can reach a maximum of 1.6%.</p>","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037492","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Microballoon actuators as a potential active flow control device have been studied for years. However, most studies have relied on experimental methods to investigate its effects. In this paper, we utilized the numerical method of steady-state RANS to explore the feasibility of applying microballoon actuators to suppress flow separation on a wing section and a high-altitude propeller. The geometric design, including shapes and positions for microballoons, is introduced, and these microballoons are fully resolved for the numerical models to better assess the influence of sensitive parameters. The turbulent model used in simulations is well validated in comparison with experimental data. In the wing section model, computational results show that at , placing nonrotation microballoons close to the separation point can suppress separation bubbles and decrease drag by 12% before the stall angle of attack. In the propeller model, computational results show that placing a microballoon actuator array with a proper dimension and position on the blade can also effectively suppress the crossflow separation appearing at the trailing edge. At a rotational speed of 450 rpm, the efficiency enhancement can reach a maximum of 1.6%.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.