Feasibility of UV–Vis spectroscopy combined with pattern recognition techniques to authenticate the medicinal plant material from different geographical areas
Dorina Casoni, Simona Codruța Aurora Cobzac, Ileana Maria Simion
{"title":"Feasibility of UV–Vis spectroscopy combined with pattern recognition techniques to authenticate the medicinal plant material from different geographical areas","authors":"Dorina Casoni, Simona Codruța Aurora Cobzac, Ileana Maria Simion","doi":"10.1186/s40543-024-00428-2","DOIUrl":null,"url":null,"abstract":"The correct identification and authentication of medicinal plants material is a crucial task that ensures quality and prevent adulteration. The use of UV–Vis spectroscopy with principal component analysis (PCA) and discriminant analysis (DA) was proposed for identification/authentication of plant material form different genus and different geographical areas provenience. Hydroalcoholic extracts of samples from twelve genus collected from seven countries (Romania, North Macedonia, Germany, Italy, Serbia, Russia and Kazakhstan) were used. The UV–Vis spectra of the extracts were acquired in the 200–800 nm spectral range, and signal smoothing was used for pre-processing the spectral data. Hierarchical clustering analysis (HCA) with 1-Pearson r distance measurement was used to classify the samples based on the original spectra and different-order derivative spectra, respectively. Data from original spectra and from different-order derivative spectra were evaluated by PCA method. Using the PCA with varimax rotation approach, the spectral ranges with significant contribution for samples classification were revealed for the first time. When the PCA method coupled with DA was applied to the data obtained from the original spectra and the fourth-order derivative spectra, the samples were correctly classified to the respective groups with a 98.04% accuracy. The proposed method can be a useful tool for rapid authentication of plant material derived from different countries.","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-024-00428-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The correct identification and authentication of medicinal plants material is a crucial task that ensures quality and prevent adulteration. The use of UV–Vis spectroscopy with principal component analysis (PCA) and discriminant analysis (DA) was proposed for identification/authentication of plant material form different genus and different geographical areas provenience. Hydroalcoholic extracts of samples from twelve genus collected from seven countries (Romania, North Macedonia, Germany, Italy, Serbia, Russia and Kazakhstan) were used. The UV–Vis spectra of the extracts were acquired in the 200–800 nm spectral range, and signal smoothing was used for pre-processing the spectral data. Hierarchical clustering analysis (HCA) with 1-Pearson r distance measurement was used to classify the samples based on the original spectra and different-order derivative spectra, respectively. Data from original spectra and from different-order derivative spectra were evaluated by PCA method. Using the PCA with varimax rotation approach, the spectral ranges with significant contribution for samples classification were revealed for the first time. When the PCA method coupled with DA was applied to the data obtained from the original spectra and the fourth-order derivative spectra, the samples were correctly classified to the respective groups with a 98.04% accuracy. The proposed method can be a useful tool for rapid authentication of plant material derived from different countries.
期刊介绍:
The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.