Mohamed Taha Osman Abdelraheem, Ali Aras, Hasan Ali Taner, Tevfik Agacayak
{"title":"Solvent Extraction of Manganese and Zinc from Chloride Leach Solution of Spent Zn–C Batteries with DEHPA in Benzene Diluent","authors":"Mohamed Taha Osman Abdelraheem, Ali Aras, Hasan Ali Taner, Tevfik Agacayak","doi":"10.1007/s40831-024-00810-9","DOIUrl":null,"url":null,"abstract":"<p>The applicability of utilizing solvent extraction processes of manganese (Mn) and zinc (Zn) from chloride leachate of spent zinc–carbon (Zn–C) batteries has been studied by using di-2-ethylhexyl phosphoric acid (DEHPA) as an extractant agent. The effect of five factors (equilibrium pH, O/A ratio, temperature, extractant concentration, and diluent type) were investigated. According to the results gained, the appropriate solution pH level for DEHPA was found to be 6.5. With DEHPA (20%, v/v), 77.50% Mn and 100% Zn were extracted, within 15 min contact time at a 1:1 aqueous/organic ratio and 50 °C temperature. Also, a McCabe–Thiele diagram was drawn and one single-step extraction for Zn and a two-stage process for Mn were needed to achieve the highest extraction efficiency. ΔH as a thermodynamic parameter was calculated and found to be 18.39 kJ/mol for Mn and − 245.50 kJ/mol for Zn, respectively, indicating that the extraction process was endothermic for Mn and exothermic for Zn. A desirable stripping of Mn and Zn from the loaded organic phase could be obtained using a stripping solution of 6 M HCl.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"35 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00810-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The applicability of utilizing solvent extraction processes of manganese (Mn) and zinc (Zn) from chloride leachate of spent zinc–carbon (Zn–C) batteries has been studied by using di-2-ethylhexyl phosphoric acid (DEHPA) as an extractant agent. The effect of five factors (equilibrium pH, O/A ratio, temperature, extractant concentration, and diluent type) were investigated. According to the results gained, the appropriate solution pH level for DEHPA was found to be 6.5. With DEHPA (20%, v/v), 77.50% Mn and 100% Zn were extracted, within 15 min contact time at a 1:1 aqueous/organic ratio and 50 °C temperature. Also, a McCabe–Thiele diagram was drawn and one single-step extraction for Zn and a two-stage process for Mn were needed to achieve the highest extraction efficiency. ΔH as a thermodynamic parameter was calculated and found to be 18.39 kJ/mol for Mn and − 245.50 kJ/mol for Zn, respectively, indicating that the extraction process was endothermic for Mn and exothermic for Zn. A desirable stripping of Mn and Zn from the loaded organic phase could be obtained using a stripping solution of 6 M HCl.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.