Kamile Öztürk Kösenciğ, Elif Bahar Okuyucu, Özgün Balaban
{"title":"Structural Plan Schema Generation Through Generative Adversarial Networks","authors":"Kamile Öztürk Kösenciğ, Elif Bahar Okuyucu, Özgün Balaban","doi":"10.1007/s00004-024-00766-z","DOIUrl":null,"url":null,"abstract":"<p>This paper suggests a workflow that generates floor plans with structural elements. Generating structural layouts in a BIM environment with the implementation of a machine learning method allows a future projection for fast and easy exploration of multiple design options. Pix2Pix, a Generative Adversarial Networks (GAN) model, takes the wall layout as input and generates a structural layout by learning from existing knowledge used to generate a decision support system for structural layout generation. The paper also suggest an additional script as a fine-adjustment model to refine the structural layout based on predetermined structural rules. This script increases the accuracy of the structural layouts generated by the GAN algorithm. Based on the test dataset, the research demonstrates a 64% success rate in providing structural schema assistance. Considering the results, this study seems to have the potential to be a supportive application in the early design phase.</p>","PeriodicalId":54719,"journal":{"name":"Nexus Network Journal","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nexus Network Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00004-024-00766-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper suggests a workflow that generates floor plans with structural elements. Generating structural layouts in a BIM environment with the implementation of a machine learning method allows a future projection for fast and easy exploration of multiple design options. Pix2Pix, a Generative Adversarial Networks (GAN) model, takes the wall layout as input and generates a structural layout by learning from existing knowledge used to generate a decision support system for structural layout generation. The paper also suggest an additional script as a fine-adjustment model to refine the structural layout based on predetermined structural rules. This script increases the accuracy of the structural layouts generated by the GAN algorithm. Based on the test dataset, the research demonstrates a 64% success rate in providing structural schema assistance. Considering the results, this study seems to have the potential to be a supportive application in the early design phase.
期刊介绍:
Founded in 1999, the Nexus Network Journal (NNJ) is a peer-reviewed journal for researchers, professionals and students engaged in the study of the application of mathematical principles to architectural design. Its goal is to present the broadest possible consideration of all aspects of the relationships between architecture and mathematics, including landscape architecture and urban design.