{"title":"Comparative analysis of temperature-based graphical indices for correlating the total π-electron energy of benzenoid hydrocarbons","authors":"Sakander Hayat, Jia-Bao Liu","doi":"10.1142/s021797922550047x","DOIUrl":null,"url":null,"abstract":"<p>In a graph <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo>=</mo><mo stretchy=\"false\">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the temperature <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> of a vertex <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>∈</mo><mi>V</mi></math></span><span></span> is defined as <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub><mo stretchy=\"false\">/</mo><mi>n</mi><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span>, where <i>n</i> is the order of <i>G</i> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span><span></span> is the valency/degree of <i>x</i>. A topological/graphical index <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GI</mtext></mstyle></math></span><span></span> is a map <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GI</mtext></mstyle><mo>:</mo><mo>∑</mo><mo>→</mo><mi>ℝ</mi></math></span><span></span>, where ∑ (respectively, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℝ</mi></math></span><span></span>) is the set of simple connected graphs (respectively, real numbers). Graphical indices are employed in quantitative structure-property relationship (QSPR) modeling to predict physicochemical/thermodynamic/biological characteristics of a compound. A temperature-based graphical index of a chemical graph <i>G</i> is defined as <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GI</mtext></mstyle></mrow><mrow><mi>T</mi></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mstyle><mtext mathvariant=\"normal\">edges</mtext></mstyle></mrow></msub><mi>f</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is a symmetric 2-variable map. In this paper, we introduce two new novel temperature-based indices named as the reduced reciprocal product-connectivity temperature (<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">RRPT</mtext></mstyle></math></span><span></span>) index and the geometric-arithmetic temperature (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GAT</mtext></mstyle></math></span><span></span>) index. The predictive potential of these indices has been investigated by employing them in structure-property modeling of the total <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi></math></span><span></span>-electronic energy <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of benzenoid hydrocarbons. In order to validate the statistical inference, the lower 30 BHs have been opted as test molecules as their experimental data for <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is also publicly available. First, we employ a computer-based computational method to compute temperature indices of 30 lower BHs. Certain QPSR models are proposed by utilizing the experimental data of <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span><span></span> for the BHs. Our statistical analysis suggests that the most efficient regression models are, in fact, linear. Our statistical analysis asserts that both <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">RRPT</mtext></mstyle></math></span><span></span> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">GAT</mtext></mstyle></math></span><span></span> outperformed all the existing temperature indices for correlating <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span><span></span> for the BHs. The results suggest their further employability in QSPR modeling. Importantly, our research contributes toward countering proliferation of graphical indices.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"46 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s021797922550047x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In a graph , the temperature of a vertex is defined as , where n is the order of G and is the valency/degree of x. A topological/graphical index is a map , where ∑ (respectively, ) is the set of simple connected graphs (respectively, real numbers). Graphical indices are employed in quantitative structure-property relationship (QSPR) modeling to predict physicochemical/thermodynamic/biological characteristics of a compound. A temperature-based graphical index of a chemical graph G is defined as , where is a symmetric 2-variable map. In this paper, we introduce two new novel temperature-based indices named as the reduced reciprocal product-connectivity temperature () index and the geometric-arithmetic temperature () index. The predictive potential of these indices has been investigated by employing them in structure-property modeling of the total -electronic energy of benzenoid hydrocarbons. In order to validate the statistical inference, the lower 30 BHs have been opted as test molecules as their experimental data for is also publicly available. First, we employ a computer-based computational method to compute temperature indices of 30 lower BHs. Certain QPSR models are proposed by utilizing the experimental data of for the BHs. Our statistical analysis suggests that the most efficient regression models are, in fact, linear. Our statistical analysis asserts that both and outperformed all the existing temperature indices for correlating for the BHs. The results suggest their further employability in QSPR modeling. Importantly, our research contributes toward countering proliferation of graphical indices.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.