{"title":"Altered Grooming Cycles in Transgenic Drosophila.","authors":"John M Ringo, Daniel Segal","doi":"10.1007/s10519-024-10180-3","DOIUrl":null,"url":null,"abstract":"<p><p>Head grooming in Drosophila consists of repeated sweeps of the legs across the head, comprising regular cycles. We used the GAL4-UAS system to study the effects of overexpressing shibire<sup>ts1</sup> and of Adar knockdown via RNA interference, on the period of head-grooming cycles in Drosophila. Overexpressing shibire<sup>ts1</sup> interferes with synaptic vesicle recycling and thus with cell communication, while Adar knockdown reduces RNA editing of neuronal transcripts for a large number of genes. All transgenic flies and their controls were tested at 22° to avoid temperature effects; in wild type, cycle frequency varied with temperature with a Q<sub>10</sub> of 1.3. Two experiments were performed with transgenic shibire<sup>ts1</sup>: (1) each fly was heat-shocked for 10 min at 30° immediately before testing at 22° and (2) flies were not heat shocked. In both experiments, cycle period was increased when shibire<sup>ts1</sup> was overexpressed in all neurons, but was not increased when shibire<sup>ts1</sup> was overexpressed in motoneurons alone. We hypothesize that grooming cycles in flies overexpressing shibire<sup>ts1</sup> are lengthened because of synaptic impairment in neural circuits that control head-grooming cycles. In flies with constitutive, pan-neuronal Adar knockdown, cycle period was more variable within individuals, but mean cycle period was not significantly altered. We conclude that RNA editing is essential for the maintenance of within-individual stereotypy of head-grooming cycles.</p>","PeriodicalId":8715,"journal":{"name":"Behavior Genetics","volume":" ","pages":"290-301"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10519-024-10180-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Head grooming in Drosophila consists of repeated sweeps of the legs across the head, comprising regular cycles. We used the GAL4-UAS system to study the effects of overexpressing shibirets1 and of Adar knockdown via RNA interference, on the period of head-grooming cycles in Drosophila. Overexpressing shibirets1 interferes with synaptic vesicle recycling and thus with cell communication, while Adar knockdown reduces RNA editing of neuronal transcripts for a large number of genes. All transgenic flies and their controls were tested at 22° to avoid temperature effects; in wild type, cycle frequency varied with temperature with a Q10 of 1.3. Two experiments were performed with transgenic shibirets1: (1) each fly was heat-shocked for 10 min at 30° immediately before testing at 22° and (2) flies were not heat shocked. In both experiments, cycle period was increased when shibirets1 was overexpressed in all neurons, but was not increased when shibirets1 was overexpressed in motoneurons alone. We hypothesize that grooming cycles in flies overexpressing shibirets1 are lengthened because of synaptic impairment in neural circuits that control head-grooming cycles. In flies with constitutive, pan-neuronal Adar knockdown, cycle period was more variable within individuals, but mean cycle period was not significantly altered. We conclude that RNA editing is essential for the maintenance of within-individual stereotypy of head-grooming cycles.
期刊介绍:
Behavior Genetics - the leading journal concerned with the genetic analysis of complex traits - is published in cooperation with the Behavior Genetics Association. This timely journal disseminates the most current original research on the inheritance and evolution of behavioral characteristics in man and other species. Contributions from eminent international researchers focus on both the application of various genetic perspectives to the study of behavioral characteristics and the influence of behavioral differences on the genetic structure of populations.