In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL mAbs Pub Date : 2024-01-01 Epub Date: 2024-03-27 DOI:10.1080/19420862.2024.2333729
Aimee E Mattei, Andres H Gutierrez, Soorya Seshadri, Jacob Tivin, Matt Ardito, Amy S Rosenberg, William D Martin, Anne S De Groot
{"title":"In silico methods for immunogenicity risk assessment and human homology screening for therapeutic antibodies.","authors":"Aimee E Mattei, Andres H Gutierrez, Soorya Seshadri, Jacob Tivin, Matt Ardito, Amy S Rosenberg, William D Martin, Anne S De Groot","doi":"10.1080/19420862.2024.2333729","DOIUrl":null,"url":null,"abstract":"<p><p>In silico immunogenicity risk assessment has been an important step in the development path for many biologic therapeutics, including monoclonal antibodies. Even if the source of a given biologic is 'fully human', T cell epitopes that are contained in the sequences of the biologic may activate the immune system, enabling the development of anti-drug antibodies that can reduce drug efficacy and may contribute to adverse events. Computational tools that identify T cell epitopes from primary amino acid sequences have been used to assess the immunogenic potential of therapeutic candidates for several decades. To facilitate larger scale analyses and accelerate preclinical immunogenicity risk assessment, our group developed an integrated web-based platform called ISPRI, (Immunogenicity Screening and Protein Re-engineering Interface) that provides hands-on access through a secure web-based interface for scientists working in large and mid-sized biotech companies in the US, Europe, and Japan. This toolkit has evolved and now contains an array of algorithms that can be used individually and/or consecutively for immunogenicity assessment and protein engineering. Most analyses start with the advanced epitope mapping tool (EpiMatrix), then proceed to identify epitope clusters using ClustiMer, and then use a tool called JanusMatrix to define whether any of the T cell epitope clusters may generate a regulatory T cell response which may diminish or eliminate anti-drug antibody formation. Candidates can be compared to similar products on a normalized immunogenicity scale. Should modifications to the biologic sequence be an option, a tool for moderating putative immunogenicity by editing T cell epitopes out of the sequence is available (OptiMatrix). Although this perspective discusses the in-silico immunogenicity risk assessment for monoclonal antibodies, bi-specifics, multi-specifics, and antibody-drug conjugates, the analysis of additional therapeutic modalities such as enzyme replacement proteins, blood factor proteins, CAR-T, gene therapy products, and peptide drugs is also made available on the ISPRI platform.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2333729"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2333729","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In silico immunogenicity risk assessment has been an important step in the development path for many biologic therapeutics, including monoclonal antibodies. Even if the source of a given biologic is 'fully human', T cell epitopes that are contained in the sequences of the biologic may activate the immune system, enabling the development of anti-drug antibodies that can reduce drug efficacy and may contribute to adverse events. Computational tools that identify T cell epitopes from primary amino acid sequences have been used to assess the immunogenic potential of therapeutic candidates for several decades. To facilitate larger scale analyses and accelerate preclinical immunogenicity risk assessment, our group developed an integrated web-based platform called ISPRI, (Immunogenicity Screening and Protein Re-engineering Interface) that provides hands-on access through a secure web-based interface for scientists working in large and mid-sized biotech companies in the US, Europe, and Japan. This toolkit has evolved and now contains an array of algorithms that can be used individually and/or consecutively for immunogenicity assessment and protein engineering. Most analyses start with the advanced epitope mapping tool (EpiMatrix), then proceed to identify epitope clusters using ClustiMer, and then use a tool called JanusMatrix to define whether any of the T cell epitope clusters may generate a regulatory T cell response which may diminish or eliminate anti-drug antibody formation. Candidates can be compared to similar products on a normalized immunogenicity scale. Should modifications to the biologic sequence be an option, a tool for moderating putative immunogenicity by editing T cell epitopes out of the sequence is available (OptiMatrix). Although this perspective discusses the in-silico immunogenicity risk assessment for monoclonal antibodies, bi-specifics, multi-specifics, and antibody-drug conjugates, the analysis of additional therapeutic modalities such as enzyme replacement proteins, blood factor proteins, CAR-T, gene therapy products, and peptide drugs is also made available on the ISPRI platform.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
治疗性抗体免疫原性风险评估和人类同源性筛选的硅学方法。
硅学免疫原性风险评估是包括单克隆抗体在内的许多生物疗法开发过程中的一个重要步骤。即使某种生物制剂的来源是 "全人源 "的,但生物制剂序列中包含的 T 细胞表位可能会激活免疫系统,从而产生抗药性抗体,降低药物疗效并导致不良反应。几十年来,从主氨基酸序列中识别 T 细胞表位的计算工具一直被用于评估候选疗法的免疫原性潜力。为了便于进行更大规模的分析并加快临床前免疫原性风险评估,我们的研究小组开发了一个名为 ISPRI(免疫原性筛选和蛋白质再工程界面)的综合网络平台,通过一个安全的网络界面为在美国、欧洲和日本的大中型生物技术公司工作的科学家提供实际操作访问。该工具包不断发展,目前包含一系列算法,可单独和/或连续用于免疫原性评估和蛋白质工程。大多数分析都从高级表位绘图工具(EpiMatrix)开始,然后使用 ClustiMer 识别表位群,再使用一种名为 JanusMatrix 的工具确定 T 细胞表位群是否会产生调节性 T 细胞反应,从而减少或消除抗药抗体的形成。候选药物可与同类产品进行归一化免疫原性比较。如果对生物序列进行修改是一种选择,可以使用一种工具(OptiMatrix),通过编辑序列中的 T 细胞表位来缓和假定的免疫原性。虽然本文讨论的是单克隆抗体、双特异性抗体、多特异性抗体和抗体-药物共轭物的体内免疫原性风险评估,但 ISPRI 平台还可对酶替代蛋白、血液因子蛋白、CAR-T、基因治疗产品和多肽药物等其他治疗方式进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
期刊最新文献
Sequence-based engineering of pH-sensitive antibodies for tumor targeting or endosomal recycling applications. Systematic analysis of Fc mutations designed to reduce binding to Fc-gamma receptors Navigating large-volume subcutaneous injections of biopharmaceuticals: a systematic review of clinical pipelines and approved products Antibody association in solution: cluster distributions and mechanisms Reducing neonatal Fc receptor binding enhances clearance and brain-to-blood ratio of TfR-delivered bispecific amyloid-β antibody
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1