AC loss study of high-temperature superconducting stacked conductors based on parameter identification method

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED Physica C-superconductivity and Its Applications Pub Date : 2024-03-27 DOI:10.1016/j.physc.2024.1354451
Zhiwen Lei , Junwen Wei , Zhiyong Yan , Zi Li , Xuyang Kang , Suxin Wang , Ying Xu , Feiyang Long , Yunfei Tan
{"title":"AC loss study of high-temperature superconducting stacked conductors based on parameter identification method","authors":"Zhiwen Lei ,&nbsp;Junwen Wei ,&nbsp;Zhiyong Yan ,&nbsp;Zi Li ,&nbsp;Xuyang Kang ,&nbsp;Suxin Wang ,&nbsp;Ying Xu ,&nbsp;Feiyang Long ,&nbsp;Yunfei Tan","doi":"10.1016/j.physc.2024.1354451","DOIUrl":null,"url":null,"abstract":"<div><p>Fusion magnets generate significant AC loss during the processes of excitation and demagnetization. The electrical measurement was predominantly employed as the method for estimating the AC loss. However, the phase-locked amplifier method and integral method (IM) can access the average power across one or multiple current cycles but leave the instantaneous power value unrecorded. In this study, the AC loss of two types of high-temperature superconducting (HTS) stacked conductors composed of REBCO and Bi-2223 were measured. An AC loss analysis method based on parameter identification method is employed to study AC loss in REBCO and Bi-2223 stacked conductors by identifying their instantaneous inductance and instantaneous resistance. Unlike the integral method, the AC loss analysis method based on parameter identification method can analyze the average power, and also the instantaneous power at any given time using a fixed forgetting factor which can affect the accuracy of the calculation. The experimental data suggest that, under identical frequency and current, the AC loss of the REBCO stacked conductor is approximately three times that of the Bi-2223 stacked conductor.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"619 ","pages":"Article 1354451"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000169","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fusion magnets generate significant AC loss during the processes of excitation and demagnetization. The electrical measurement was predominantly employed as the method for estimating the AC loss. However, the phase-locked amplifier method and integral method (IM) can access the average power across one or multiple current cycles but leave the instantaneous power value unrecorded. In this study, the AC loss of two types of high-temperature superconducting (HTS) stacked conductors composed of REBCO and Bi-2223 were measured. An AC loss analysis method based on parameter identification method is employed to study AC loss in REBCO and Bi-2223 stacked conductors by identifying their instantaneous inductance and instantaneous resistance. Unlike the integral method, the AC loss analysis method based on parameter identification method can analyze the average power, and also the instantaneous power at any given time using a fixed forgetting factor which can affect the accuracy of the calculation. The experimental data suggest that, under identical frequency and current, the AC loss of the REBCO stacked conductor is approximately three times that of the Bi-2223 stacked conductor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数识别方法的高温超导叠层导体交流损耗研究
聚变磁体在激磁和退磁过程中会产生大量交流损耗。电气测量是估算交流损耗的主要方法。然而,锁相放大器法和积分法(IM)可以获得一个或多个电流周期的平均功率,但无法记录瞬时功率值。本研究测量了两种由 REBCO 和 Bi-2223 组成的高温超导(HTS)叠层导体的交流损耗。通过识别 REBCO 和 Bi-2223 叠层导体的瞬时电感和瞬时电阻,采用基于参数识别方法的交流损耗分析方法来研究它们的交流损耗。与积分法不同的是,基于参数识别法的交流损耗分析方法可以分析平均功率,也可以分析任何给定时间内的瞬时功率,但使用固定的遗忘因子会影响计算的准确性。实验数据表明,在相同频率和电流条件下,REBCO 叠层导体的交流损耗大约是 Bi-2223 叠层导体的三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
期刊最新文献
The fabrication of graphene supported Ni nanoparticles and its doping influence on the microstructure and superconductivity of MgB2 Spin fluctuations in conventional superconductors and anomalous isotope effect in PdH and PdD Influence of ReBCO tape winding mode on the magnetization loss of CORC cable under the shielding current effect Preparation of double-layer REBa2Cu3O7−δ tapes for enhancing engineering current density by Ag-diffusion bonding Theoretical calculation and analysis of electromagnetic performance of high temperature superconducting electric flywheel energy storage system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1