Feasibility study on quench detection methods of Raman and Rayleigh scattering techniques in optical fiber encapsulated HTS coils

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED Physica C-superconductivity and Its Applications Pub Date : 2024-03-27 DOI:10.1016/j.physc.2024.1354464
Long Zhang , Yingying Lv , Zhuyong Li , Wenyi Li , Yajun Jia , Junjie Jiang , Xiyuan Teng , Zhixuan Zhang , Kyungwoo Ryu
{"title":"Feasibility study on quench detection methods of Raman and Rayleigh scattering techniques in optical fiber encapsulated HTS coils","authors":"Long Zhang ,&nbsp;Yingying Lv ,&nbsp;Zhuyong Li ,&nbsp;Wenyi Li ,&nbsp;Yajun Jia ,&nbsp;Junjie Jiang ,&nbsp;Xiyuan Teng ,&nbsp;Zhixuan Zhang ,&nbsp;Kyungwoo Ryu","doi":"10.1016/j.physc.2024.1354464","DOIUrl":null,"url":null,"abstract":"<div><p>Quench detection is a key issue to be solved for safe operation of high temperature superconducting (HTS) magnets. Recently, distributed optical fiber sensors based on Raman and Rayleigh scattering techniques are proposed for quench detection in HTS applications. However, sensing and demodulating principles of these two techniques are different, and they may show different performances in quench detection. In this paper, a 13 m long optical fiber encapsulated HTS coil (OF-coil) was fabricated. Two sensing devices based on Raman and Rayleigh techniques, which are named Raman-device and Rayleigh-device, were prepared. Overcurrent and heater induced quench detection experiments in the OF-coil were carried out and the above two devices were used for quench detection. The results show that both Raman-device and Rayleigh-device can measure temperature changes of the OF-coil in the overcurrent experiment. And their quench response time is 36 s and 14 s, respectively. In heater induced quench detection experiment, Rayleigh-device can successfully acquire local temperature rise of the OF-coil, and the quench response time is 1.7 s. For Raman-device, its spatial resolution is too large to realize local quench detection.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000297","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quench detection is a key issue to be solved for safe operation of high temperature superconducting (HTS) magnets. Recently, distributed optical fiber sensors based on Raman and Rayleigh scattering techniques are proposed for quench detection in HTS applications. However, sensing and demodulating principles of these two techniques are different, and they may show different performances in quench detection. In this paper, a 13 m long optical fiber encapsulated HTS coil (OF-coil) was fabricated. Two sensing devices based on Raman and Rayleigh techniques, which are named Raman-device and Rayleigh-device, were prepared. Overcurrent and heater induced quench detection experiments in the OF-coil were carried out and the above two devices were used for quench detection. The results show that both Raman-device and Rayleigh-device can measure temperature changes of the OF-coil in the overcurrent experiment. And their quench response time is 36 s and 14 s, respectively. In heater induced quench detection experiment, Rayleigh-device can successfully acquire local temperature rise of the OF-coil, and the quench response time is 1.7 s. For Raman-device, its spatial resolution is too large to realize local quench detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光纤封装 HTS 线圈中拉曼和瑞利散射技术淬火检测方法的可行性研究
淬火检测是高温超导(HTS)磁体安全运行需要解决的一个关键问题。最近,基于拉曼和瑞利散射技术的分布式光纤传感器被提出用于 HTS 应用中的淬火检测。然而,这两种技术的传感和解调原理不同,在淬火检测中可能表现出不同的性能。本文制作了一个 13 米长的光纤封装 HTS 线圈(OF-coil)。制备了两种基于拉曼和瑞利技术的传感设备,分别命名为拉曼设备和瑞利设备。在 OF 线圈中进行了过流和加热器诱导淬火检测实验,并使用上述两个装置进行淬火检测。结果表明,在过流实验中,拉曼器件和瑞利器件都能测量 OF 线圈的温度变化。它们的淬火响应时间分别为 36 秒和 14 秒。在加热器诱导淬火检测实验中,瑞利装置可以成功获取 OF 线圈的局部温升,淬火响应时间为 1.7 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
期刊最新文献
Zhang-Rice singlets dominate critical temperature evolution of cuprate superconductivity Performance evaluation of superconductor integrated circuit simulators Optimization of high temperature superconducting motor magnets with strong airgap flux density Temperature-dependent properties of basic elements of all-NbN RSFQ circuits Electron, phonon, and superconducting properties of Mg2CuH6 under pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1