Applications of ArcticDEM for measuring volcanic dynamics, landslides, retrogressive thaw slumps, snowdrifts, and vegetation heights

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2024-03-22 DOI:10.1016/j.srs.2024.100130
Chunli Dai , Ian M. Howat , Jurjen van der Sluijs , Anna K. Liljedahl , Bretwood Higman , Jeffrey T. Freymueller , Melissa K. Ward Jones , Steven V. Kokelj , Julia Boike , Branden Walker , Philip Marsh
{"title":"Applications of ArcticDEM for measuring volcanic dynamics, landslides, retrogressive thaw slumps, snowdrifts, and vegetation heights","authors":"Chunli Dai ,&nbsp;Ian M. Howat ,&nbsp;Jurjen van der Sluijs ,&nbsp;Anna K. Liljedahl ,&nbsp;Bretwood Higman ,&nbsp;Jeffrey T. Freymueller ,&nbsp;Melissa K. Ward Jones ,&nbsp;Steven V. Kokelj ,&nbsp;Julia Boike ,&nbsp;Branden Walker ,&nbsp;Philip Marsh","doi":"10.1016/j.srs.2024.100130","DOIUrl":null,"url":null,"abstract":"<div><p>Topographical changes are of fundamental interest to a wide range of Arctic science disciplines faced with the need to anticipate, monitor, and respond to the effects of climate change, including geohazard management, glaciology, hydrology, permafrost, and ecology. This study demonstrates several geomorphological, cryospheric, and biophysical applications of ArcticDEM – a large collection of publicly available, time-dependent digital elevation models (DEMs) of the Arctic. Our study illustrates ArcticDEM's applicability across different disciplines and five orders of magnitude of elevation derivatives, including measuring volcanic lava flows, ice cauldrons, post-failure landslides, retrogressive thaw slumps, snowdrifts, and tundra vegetation heights. We quantified surface elevation changes in different geological settings and conditions using the time series of ArcticDEM. Following the 2014–2015 Bárðarbunga eruption in Iceland, ArcticDEM analysis mapped the lava flow field, and revealed the post-eruptive ice flows and ice cauldron dynamics. The total dense-rock equivalent (DRE) volume of lava flows is estimated to be (1431 ± 2) million m<sup>3</sup>. Then, we present the aftermath of a landslide in Kinnikinnick, Alaska, yielding a total landslide volume of (400 ± 8) × 10<sup>3</sup> m<sup>3</sup> and a total area of 0.025 km<sup>2</sup>. ArcticDEM is further proven useful for studying retrogressive thaw slumps (RTS). The ArcticDEM-mapped RTS profile is validated by ICESat-2 and drone photogrammetry resulting in a standard deviation of 0.5 m. Volume estimates for lake-side and hillslope RTSs range between 40,000 ± 9000 m<sup>3</sup> and 1,160,000 ± 85,000 m<sup>3</sup>, highlighting applicability across a range of RTS magnitudes. A case study for mapping tundra snow demonstrates ArcticDEM's potential for identifying high-accumulation, late-lying snow areas. The approach proves effective in quantifying relative snow accumulation rather than absolute values (standard deviation of 0.25 m, bias of −0.41 m, and a correlation coefficient of 0.69 with snow depth estimated by unmanned aerial systems photogrammetry). Furthermore, ArcticDEM data show its feasibility for estimating tundra vegetation heights with a standard deviation of 0.3 m (no bias) and a correlation up to 0.8 compared to the light detection and ranging (LiDAR). The demonstrated capabilities of ArcticDEM will pave the way for the broad and pan-Arctic use of this new data source for many disciplines, especially when combined with other imagery products. The wide range of signals embedded in ArcticDEM underscores the potential challenges in deciphering signals in regions affected by various geological processes and environmental influences.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"9 ","pages":"Article 100130"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000142/pdfft?md5=5fd3c367a325051f131de71f04e51c16&pid=1-s2.0-S2666017224000142-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Topographical changes are of fundamental interest to a wide range of Arctic science disciplines faced with the need to anticipate, monitor, and respond to the effects of climate change, including geohazard management, glaciology, hydrology, permafrost, and ecology. This study demonstrates several geomorphological, cryospheric, and biophysical applications of ArcticDEM – a large collection of publicly available, time-dependent digital elevation models (DEMs) of the Arctic. Our study illustrates ArcticDEM's applicability across different disciplines and five orders of magnitude of elevation derivatives, including measuring volcanic lava flows, ice cauldrons, post-failure landslides, retrogressive thaw slumps, snowdrifts, and tundra vegetation heights. We quantified surface elevation changes in different geological settings and conditions using the time series of ArcticDEM. Following the 2014–2015 Bárðarbunga eruption in Iceland, ArcticDEM analysis mapped the lava flow field, and revealed the post-eruptive ice flows and ice cauldron dynamics. The total dense-rock equivalent (DRE) volume of lava flows is estimated to be (1431 ± 2) million m3. Then, we present the aftermath of a landslide in Kinnikinnick, Alaska, yielding a total landslide volume of (400 ± 8) × 103 m3 and a total area of 0.025 km2. ArcticDEM is further proven useful for studying retrogressive thaw slumps (RTS). The ArcticDEM-mapped RTS profile is validated by ICESat-2 and drone photogrammetry resulting in a standard deviation of 0.5 m. Volume estimates for lake-side and hillslope RTSs range between 40,000 ± 9000 m3 and 1,160,000 ± 85,000 m3, highlighting applicability across a range of RTS magnitudes. A case study for mapping tundra snow demonstrates ArcticDEM's potential for identifying high-accumulation, late-lying snow areas. The approach proves effective in quantifying relative snow accumulation rather than absolute values (standard deviation of 0.25 m, bias of −0.41 m, and a correlation coefficient of 0.69 with snow depth estimated by unmanned aerial systems photogrammetry). Furthermore, ArcticDEM data show its feasibility for estimating tundra vegetation heights with a standard deviation of 0.3 m (no bias) and a correlation up to 0.8 compared to the light detection and ranging (LiDAR). The demonstrated capabilities of ArcticDEM will pave the way for the broad and pan-Arctic use of this new data source for many disciplines, especially when combined with other imagery products. The wide range of signals embedded in ArcticDEM underscores the potential challenges in deciphering signals in regions affected by various geological processes and environmental influences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用 ArcticDEM 测量火山动力学、滑坡、逆解冻坍塌、雪堆和植被高度
地形变化对于需要预测、监测和应对气候变化影响的众多北极科学学科,包括地质灾害管理、冰川学、水文学、永冻土学和生态学,都具有根本的意义。本研究展示了 ArcticDEM 在地貌学、冰冻层和生物物理学方面的几种应用,ArcticDEM 是一个公开的、随时间变化的北极数字高程模型(DEM)大集合。我们的研究说明了 ArcticDEM 在不同学科和五个数量级的高程衍生物中的适用性,包括测量火山熔岩流、冰锅、崩塌后滑坡、逆行解冻坍塌、雪堆和苔原植被高度。我们利用 ArcticDEM 的时间序列量化了不同地质环境和条件下的地表高程变化。在 2014-2015 年冰岛巴达尔本加火山爆发后,ArcticDEM 分析绘制了熔岩流场图,并揭示了爆发后的冰流和冰锅动态。据估计,熔岩流的总致密岩石当量(DRE)体积为(14.31 ± 2)亿立方米。然后,我们介绍了阿拉斯加金尼金尼克的滑坡后果,得出滑坡总体积为 (400 ± 8) × 103 立方米,总面积为 0.025 平方公里。ArcticDEM 还被证明可用于研究逆行融雪坍塌(RTS)。经 ICESat-2 和无人机摄影测量验证,ArcticDEM 所绘制的 RTS 剖面图的标准偏差为 0.5 米。湖边和山坡 RTS 的体积估计值介于 40,000 ± 9000 立方米和 1,160,000 ± 85,000 立方米之间,突显了 RTS 的适用范围。绘制苔原积雪图的案例研究表明,ArcticDEM 具有识别高积雪、晚积雪区域的潜力。事实证明,该方法可有效量化相对积雪量而非绝对值(标准偏差为 0.25 米,偏差为-0.41 米,与无人机摄影测量系统估算的积雪深度的相关系数为 0.69)。此外,ArcticDEM 数据显示了其估算冻原植被高度的可行性,标准偏差为 0.3 米(无偏差),与光探测和测距(LiDAR)相比,相关系数高达 0.8。ArcticDEM 所展示的能力将为许多学科广泛使用这一新的泛北极数据源铺平道路,特别是在与其他图像产品相结合时。ArcticDEM 中蕴含的各种信号凸显了在受各种地质过程和环境影响的地区破译信号的潜在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1