GraphIdx: An efficient indexing technique for accelerating graph data mining

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-03-25 DOI:10.1016/j.simpa.2024.100632
Mostofa Kamal Rasel, Mohammad Rezwanul Huq, Mohammad Arifuzzaman
{"title":"GraphIdx: An efficient indexing technique for accelerating graph data mining","authors":"Mostofa Kamal Rasel,&nbsp;Mohammad Rezwanul Huq,&nbsp;Mohammad Arifuzzaman","doi":"10.1016/j.simpa.2024.100632","DOIUrl":null,"url":null,"abstract":"<div><p>Many graph mining algorithms process large graphs with several passes and suffers from huge I/O cost. GraphIdx, an open-source C library, facilitates a memory-efficient indexing of large graphs to reduce that I/O cost. GraphIdx indexes a block of graph data for a set of nodes based on the empirical evaluation of edges. Due to the indexed graph, graph mining algorithms can access and process only the related nodes and their edges instead of scanning entire graph. As a result, the number of I/Os is significantly reduced. Moreover, GraphIdx accredited algorithms can process graphs in parallel due to the indexed data.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100632"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000204/pdfft?md5=1f5c30286b7c1be0b0b30cc7644c0f53&pid=1-s2.0-S2665963824000204-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Many graph mining algorithms process large graphs with several passes and suffers from huge I/O cost. GraphIdx, an open-source C library, facilitates a memory-efficient indexing of large graphs to reduce that I/O cost. GraphIdx indexes a block of graph data for a set of nodes based on the empirical evaluation of edges. Due to the indexed graph, graph mining algorithms can access and process only the related nodes and their edges instead of scanning entire graph. As a result, the number of I/Os is significantly reduced. Moreover, GraphIdx accredited algorithms can process graphs in parallel due to the indexed data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraphIdx:加速图数据挖掘的高效索引技术
许多图形挖掘算法在处理大型图形时都要经过多次处理,因此会产生巨大的 I/O 成本。GraphIdx 是一个开源 C 语言库,它有助于对大型图进行内存高效索引,从而降低 I/O 成本。GraphIdx 基于对边的经验评估,为一组节点的图数据块建立索引。有了索引图,图挖掘算法可以只访问和处理相关节点及其边,而无需扫描整个图。因此,I/O 数量大大减少。此外,由于有了索引数据,GraphIdx 认证算法可以并行处理图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1