Miao Xu , Yonghao Liu , Hui Li , Xiao Yang , Weijie Yue , Yu Zhang , Dong Liu , Ming Wu , Dan Wang , Guangming Xiong , Liquan Guo , Kai Song
{"title":"Anthracene degradation involved by antibiotic biosynthesis monooxygenase (ABM) in Comamonas testosteroni","authors":"Miao Xu , Yonghao Liu , Hui Li , Xiao Yang , Weijie Yue , Yu Zhang , Dong Liu , Ming Wu , Dan Wang , Guangming Xiong , Liquan Guo , Kai Song","doi":"10.1016/j.ibiod.2024.105790","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that anthracene can cause serious health problems, which is why anthracene biodegradation as a method to reduce health risks has drawn the interest of researchers. However, antibiotic contamination in the environment can seriously affect the biodegradation of anthracene. In the present study, <em>Comamonas testosteroni</em> (CT1) had the highest degradation efficiency of anthracene (88.1%), and was still 46.6% when erythromycin concentration was 1/4MIC (8 μg mL<sup>−1</sup>). Also, compared to CK, the prokaryotic transcriptome analysis of CT1 in anthracene degradation revealed an up-regulated gene that encodes antibiotic biosynthesis monooxygenase (ABM) in both anthracene and anthracene-erythromycin groups. In addition, compared to strain CT1, the <em>CtABM</em> knockout mutant (CT-M) showed a significant decrease in anthracene degradation efficiency. In contrast, <em>Escherichia coli</em> (<em>E.coli</em>) DH5α transformed with <em>CtABM</em> (EM1) exhibited a faster degradation efficiency than DH5α. Furthermore, the antimicrobial susceptibility test showed that compared to DH5α, EM1 had significant resistance to erythromycin. And the purified recombinant CtABM (rABM) had a specific activity of 2.53 μmol min<sup>−1</sup>·mg<sup>−1</sup> protein based on the oxidation of anthracene at pH 7.5 and 35 °C. Additionally, compositional analysis identified 4-benzyloxy-3-methoxybenzyl alcohol and 4-methylphthalaldehyde as anthracene metabolites by EM1, suggesting a novel anthracene degradation pathway.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524000611","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that anthracene can cause serious health problems, which is why anthracene biodegradation as a method to reduce health risks has drawn the interest of researchers. However, antibiotic contamination in the environment can seriously affect the biodegradation of anthracene. In the present study, Comamonas testosteroni (CT1) had the highest degradation efficiency of anthracene (88.1%), and was still 46.6% when erythromycin concentration was 1/4MIC (8 μg mL−1). Also, compared to CK, the prokaryotic transcriptome analysis of CT1 in anthracene degradation revealed an up-regulated gene that encodes antibiotic biosynthesis monooxygenase (ABM) in both anthracene and anthracene-erythromycin groups. In addition, compared to strain CT1, the CtABM knockout mutant (CT-M) showed a significant decrease in anthracene degradation efficiency. In contrast, Escherichia coli (E.coli) DH5α transformed with CtABM (EM1) exhibited a faster degradation efficiency than DH5α. Furthermore, the antimicrobial susceptibility test showed that compared to DH5α, EM1 had significant resistance to erythromycin. And the purified recombinant CtABM (rABM) had a specific activity of 2.53 μmol min−1·mg−1 protein based on the oxidation of anthracene at pH 7.5 and 35 °C. Additionally, compositional analysis identified 4-benzyloxy-3-methoxybenzyl alcohol and 4-methylphthalaldehyde as anthracene metabolites by EM1, suggesting a novel anthracene degradation pathway.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.