A novel framework for generic Spark workload characterization and similar pattern recognition using machine learning

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-03-26 DOI:10.1016/j.jpdc.2024.104881
Mariano Garralda-Barrio, Carlos Eiras-Franco, Verónica Bolón-Canedo
{"title":"A novel framework for generic Spark workload characterization and similar pattern recognition using machine learning","authors":"Mariano Garralda-Barrio,&nbsp;Carlos Eiras-Franco,&nbsp;Verónica Bolón-Canedo","doi":"10.1016/j.jpdc.2024.104881","DOIUrl":null,"url":null,"abstract":"<div><p>Comprehensive workload characterization plays a pivotal role in comprehending Spark applications, as it enables the analysis of diverse aspects and behaviors. This understanding is indispensable for devising downstream tuning objectives, such as performance improvement. To address this pivotal issue, our work introduces a novel and scalable framework for generic Spark workload characterization, complemented by consistent geometric measurements. The presented approach aims to build robust workload descriptors by profiling only quantitative metrics at the application task-level, in a non-intrusive manner. We expand our framework for downstream workload pattern recognition by incorporating unsupervised machine learning techniques: clustering algorithms and feature selection. These techniques significantly improve the process of grouping similar workloads without relying on predefined labels. We effectively recognize 24 representative Spark workloads from diverse domains, including SQL, machine learning, web search, graph, and micro-benchmarks, available in HiBench. Our framework achieves a high accuracy F-Measure score of up to 90.9% and a Normalized Mutual Information of up to 94.5% in similar workload pattern recognition. These scores significantly outperform the results obtained in a comparative analysis with an established workload characterization approach in the literature.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"189 ","pages":"Article 104881"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0743731524000455/pdfft?md5=f38d6d7d46cfa72abd25c2f3150c7112&pid=1-s2.0-S0743731524000455-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000455","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Comprehensive workload characterization plays a pivotal role in comprehending Spark applications, as it enables the analysis of diverse aspects and behaviors. This understanding is indispensable for devising downstream tuning objectives, such as performance improvement. To address this pivotal issue, our work introduces a novel and scalable framework for generic Spark workload characterization, complemented by consistent geometric measurements. The presented approach aims to build robust workload descriptors by profiling only quantitative metrics at the application task-level, in a non-intrusive manner. We expand our framework for downstream workload pattern recognition by incorporating unsupervised machine learning techniques: clustering algorithms and feature selection. These techniques significantly improve the process of grouping similar workloads without relying on predefined labels. We effectively recognize 24 representative Spark workloads from diverse domains, including SQL, machine learning, web search, graph, and micro-benchmarks, available in HiBench. Our framework achieves a high accuracy F-Measure score of up to 90.9% and a Normalized Mutual Information of up to 94.5% in similar workload pattern recognition. These scores significantly outperform the results obtained in a comparative analysis with an established workload characterization approach in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习进行通用 Spark 工作负载特征描述和类似模式识别的新型框架
全面的工作负载特征描述在理解 Spark 应用程序方面起着至关重要的作用,因为它可以对不同的方面和行为进行分析。这种理解对于设计下游调整目标(如提高性能)是不可或缺的。为解决这一关键问题,我们的工作引入了一个新颖且可扩展的框架,用于通用 Spark 工作负载特征描述,并辅以一致的几何测量。所介绍的方法旨在以非侵入式方式,仅对应用任务级的定量指标进行剖析,从而建立稳健的工作负载描述符。我们结合了无监督机器学习技术:聚类算法和特征选择,从而扩展了下游工作负载模式识别框架。这些技术大大改进了类似工作负载的分组过程,而无需依赖预定义标签。我们有效识别了 24 种具有代表性的 Spark 工作负载,它们来自不同的领域,包括 SQL、机器学习、网络搜索、图和 HiBench 中的微基准。在类似工作负载模式识别方面,我们的框架获得了高达 90.9% 的高精度 F-Measure 分数和高达 94.5% 的归一化互信息。这些分数大大超过了与文献中已有的工作负载特征描述方法进行比较分析后得出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
Content delivery network solutions for the CMS experiment: The evolution towards HL-LHC An efficient conference key agreement protocol suited for resource constrained devices Enabling semi-supervised learning in intrusion detection systems Fault-tolerance in biswapped multiprocessor interconnection networks Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1