Tandem catalysis in electrocatalytic nitrate reduction: Unlocking efficiency and mechanism

IF 24.5 Q1 CHEMISTRY, PHYSICAL Interdisciplinary Materials Pub Date : 2024-02-28 DOI:10.1002/idm2.12152
Ziyang Wu, Yanhui Song, Haocheng Guo, Fengting Xie, Yuting Cong, Min Kuang, Jianping Yang
{"title":"Tandem catalysis in electrocatalytic nitrate reduction: Unlocking efficiency and mechanism","authors":"Ziyang Wu,&nbsp;Yanhui Song,&nbsp;Haocheng Guo,&nbsp;Fengting Xie,&nbsp;Yuting Cong,&nbsp;Min Kuang,&nbsp;Jianping Yang","doi":"10.1002/idm2.12152","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical nitrate reduction reaction (NO<sub>3</sub>RR) holds promise for ecofriendly nitrate removal. However, the challenge of achieving high selectivity and efficiency in electrocatalyst systems still significantly hampers the mechanism understanding and the large-scale application. Tandem catalysts, comprising multiple catalytic components working synergistically, offer promising potential for improving the efficiency and selectivity of the NO<sub>3</sub>RR. This review highlights recent progress in designing tandem catalysts for electrochemical NO<sub>3</sub>RR, including the noble metal-related system, transition metal electrocatalysts, and pulsed electrocatalysis strategies. Specifically, the optimization of active sites, interface engineering, synergistic effects between catalyst components, various in situ technologies, and theory simulations are discussed in detail. Challenges and opportunities in the development of tandem catalysts for scaling up electrochemical NO<sub>3</sub>RR are further discussed, such as stability, durability, and reaction mechanisms. By outlining possible solutions for future tandem catalyst design, this review aims to open avenues for efficient nitrate reduction and comprehensive insights into the mechanisms for energy sustainability and environmental safety.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"245-269"},"PeriodicalIF":24.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrate reduction reaction (NO3RR) holds promise for ecofriendly nitrate removal. However, the challenge of achieving high selectivity and efficiency in electrocatalyst systems still significantly hampers the mechanism understanding and the large-scale application. Tandem catalysts, comprising multiple catalytic components working synergistically, offer promising potential for improving the efficiency and selectivity of the NO3RR. This review highlights recent progress in designing tandem catalysts for electrochemical NO3RR, including the noble metal-related system, transition metal electrocatalysts, and pulsed electrocatalysis strategies. Specifically, the optimization of active sites, interface engineering, synergistic effects between catalyst components, various in situ technologies, and theory simulations are discussed in detail. Challenges and opportunities in the development of tandem catalysts for scaling up electrochemical NO3RR are further discussed, such as stability, durability, and reaction mechanisms. By outlining possible solutions for future tandem catalyst design, this review aims to open avenues for efficient nitrate reduction and comprehensive insights into the mechanisms for energy sustainability and environmental safety.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电催化硝酸盐还原中的串联催化:揭示效率和机理
电化学硝酸盐还原反应(NO3RR)有望实现生态友好型硝酸盐去除。然而,如何在电催化剂系统中实现高选择性和高效率仍是一大挑战,严重阻碍了对机理的理解和大规模应用。串联催化剂由多个催化元件协同作用组成,为提高 NO3RR 的效率和选择性提供了广阔的前景。本综述重点介绍了设计用于电化学 NO3RR 的串联催化剂的最新进展,包括贵金属相关体系、过渡金属电催化剂和脉冲电催化策略。具体而言,本文详细讨论了活性位点的优化、界面工程、催化剂组分之间的协同效应、各种原位技术和理论模拟。还进一步讨论了开发串联催化剂以扩大电化学 NO3RR 的规模所面临的挑战和机遇,如稳定性、耐久性和反应机制。通过概述未来串联催化剂设计的可能解决方案,本综述旨在为高效硝酸盐还原开辟道路,并全面深入地了解能源可持续性和环境安全性的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Outside Front Cover: Volume 3 Issue 6 Outside Back Cover: Volume 3 Issue 6 Idea of macro-scale and micro-scale prestressed ceramics Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1